• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于贝叶斯理论的软夹层多模式瑞雷波频散曲线反演研究

付代光, 刘江平, 周黎明, 徐浩, 廖锦芳, 陈松, 郭道龙

付代光, 刘江平, 周黎明, 徐浩, 廖锦芳, 陈松, 郭道龙. 基于贝叶斯理论的软夹层多模式瑞雷波频散曲线反演研究[J]. 岩土工程学报, 2015, 37(2): 321-329. DOI: 10.11779/CJGE201502016
引用本文: 付代光, 刘江平, 周黎明, 徐浩, 廖锦芳, 陈松, 郭道龙. 基于贝叶斯理论的软夹层多模式瑞雷波频散曲线反演研究[J]. 岩土工程学报, 2015, 37(2): 321-329. DOI: 10.11779/CJGE201502016
FU Dai-guang, LIU Jiang-ping, ZHOU Li-ming, XU Hao, LIAO Jin-fang, CHEN Song, GUO Dao-long. Inversion of multimode Rayleigh-wave dispersion curves of soft interlayer based on Bayesian theory[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 321-329. DOI: 10.11779/CJGE201502016
Citation: FU Dai-guang, LIU Jiang-ping, ZHOU Li-ming, XU Hao, LIAO Jin-fang, CHEN Song, GUO Dao-long. Inversion of multimode Rayleigh-wave dispersion curves of soft interlayer based on Bayesian theory[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 321-329. DOI: 10.11779/CJGE201502016

基于贝叶斯理论的软夹层多模式瑞雷波频散曲线反演研究  English Version

基金项目: 国家自然科学基金项目(41202223)
详细信息
    作者简介:

    付代光(1987- ),男,内蒙古乌兰浩特人,硕士,主要从事地球物理正反演方面的研究工作。E-mail: fudaiguang@163.com。

    通讯作者:

    刘江平

  • 中图分类号: TU47

Inversion of multimode Rayleigh-wave dispersion curves of soft interlayer based on Bayesian theory

  • 摘要: 获得较高精度的软夹层横波速度和厚度是瑞雷波频散曲线反演的难点之一,尤其对一些低敏感性的软夹层而言,单纯依靠传统的算法改进以及多模式反演,反演效果往往不是非常显著。首次尝试采用算法改进、多模式及非线性贝叶斯定理相结合反演低敏感性软夹层。算法改进体现在,将阻尼惯性权和混沌思想融入到粒子群算法中,但改进算法并未解决软夹层模型低敏感性的困扰;为从反演解的角度分析评价影响反演精度因素,采用无偏Metropolis-Hastings sampling(MHS)方法对后验概率进行数值积分,并通过参数旋转提高采用效率,积分得到的1D和混合边缘概率分布以及参数相关系数矩阵等参数反应了反演解的不确定性和参数间相关性等信息。为解决低敏感性反演精度低问题,尝试采用贝叶斯信息准则(BIC),判断出最佳参数化模型,而此准则得到的最佳模型与理论模型更为吻合。应用非线性贝叶斯方法和BIC准则反演实测防渗墙数据,得到的反演剖面也与已知防渗墙结构较好吻合。
    Abstract: Obtaining shear-wave velocity and thickness of soft interlayer with higher precision is always one of the difficulties in inversion of Rayleigh-wave dispersion curve, and it is not obviously improved when only depending on the improved algorithm and multimode inversion for low-sensitivity soft interlayer. The improved algorithm and combination of multimode and nonlinear Bayes' theorem are adopted to invert low-sensitivity soft interlayer. The damping inertia weight and chaos are added into the particle swarm optimization as improved algorithm. However, the improved algorithm does not solve the problem with low-sensitivity soft interlayer models. To analyze and evaluate the factors affecting the accuracy of inversion from the perspective of the inversion solution, the unbiased Metropolis-Hastings sampling (MHS) method is used for numerical integration posterior probability, and the rotation of parameters is used to improve the efficiency of sampling. The obtained integral 1D and mixed marginal probability distributions and correlation sufficiend matrix of parameters reflect the uncertainty and parameter inversion solution for correlation and other information. To solve the problem of low-curacy inversion of low-sensitivity soft interlayer, the Bayesian information criterion (BIC) is employed to determine the optimal parameters of the model. The optimal model agrees with the
  • [1] XIA J, MILLER R D, PARK C B. Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves[J]. Geophysics, 1999, 64(3): 691-700.
    [2] TOKIMATSU K, TAMURA S, KOJIMA H. Effects of multiple modes on Rayleigh wave dispersion characteristics[J]. J Geotech Eng, 1992, 118: 1529-1543.
    [3] XIA J, MILLER R D, PARK C B. Advantages of calculating shear-wave velocity from surface waves with higher modes[C]// 70th Annual Meeting. Calgary, 2000: 1295-1298.
    [4] BEATY K S, SCHMITT D R, SACCHI M. Simulated annealing inversion of multimode Rayleigh wave dispersion curves for geological structure[J]. Geophys, 2002, 151: 622-631.
    [5] XIA J, MILLER R D, PARK C B, et al. Inversion of high frequency surface waves with fundamental and higher modes[J]. Journal of Applied Geophysics, 2003, 52(1): 45-57.
    [6] 罗银河, 夏江海, 刘江平, 等. 基阶与高阶瑞利波联合反演研究[J]. 地球物理学报, 2008, 51(1): 242-249. (LUO Yin-he, XIA Jiang-hai, LIU Jiang-ping, et al. Joint inversion of fundamental and higher mode Rayleigh waves[J]. Chinese Journal Geophys, 2008, 51(1): 242-249. (in Chinese))
    [7] FENG S K, TAKESHI S, HIROAKI Y. Effectiveness of multi-mode surface wave inversion in shallow engineering site investigations[J]. Exploration Geophysics (Japan), 2005, 36: 26-33.
    [8] TILLMANN A. An unsupervised wavelet transform method for simultaneous inversion of multimode surface waves[J]. Journal of Environmental and Engineering Geophysics, 2005, 10(3): 287-294.
    [9] LIANG Q, CHEN C, ZENG C, et al. Inversion stability analysis of multimode Rayleigh-wave dispersion curves using low-velocity-layer models[J]. Near Surfaee Geophysics, 2008, 6(3): 157-165.
    [10] RYDEN N, PARK C B. Fast simulated annealing inversion of surface waves on pavement using phase-velocity spectra[J]. Geophysics, 2006, 71(4): 49-58.
    [11] PEI D H, LOUIE J N, PULLAMMANAPPALLIL S K. Application of simulated annealing inversion on high-frequency fundamental-mode Rayleigh wave dispersion curves[J]. Geophysics, 2007, 72(5): 77-85.
    [12] 崔建文. 一种改进的全局优化算法及其在面波频散曲线反演中的应用[J]. 地球物理学报, 2004, 47(3): 521-527. (CUI Jian-wen. An improved global optimization method and its application to the inversion of surface wave dispersion curves[J]. Chinese Journal Geophys, 2004, 47(3): 521-527. (in Chinese))
    [13] DAS V, GHOSAL A, SHALIVAHAN. A comparative analysis of particle swarm optimization (PSO) and very fast simulated annealing (VFSA) inversion techniques for self-potential (SP) anomalies[C]// SEG. Denver, 2010: 1849-1850.
    [14] SEN M K, STOFFA P L. Global optimization methods in geophysical inversion[M]. Amsterdam: Elsevier, 1995.
    [15] SAMBRIDGE M. Geophysical inversion with a neighbourhood algorithm-Ⅰ.Searching a parameters space[J]. Geophysical Journal International, 1999, 138(2): 479-494.
    [16] DOSSO S E. Quantifying uncertainty in geoacoustic inversion. A fast Gibbs sampler approach[J]. J Acoust Soc Am, 2001, 111(1): 129-142.
    [17] MACÍAS C C, LUKE B. Improved parameterization to invert Rayleigh-wave data for shallow profiles containing stiff inclusions[J]. Geophysics, 2007, 72(2): 1-10.
    [18] LI C L, DOSSO S E., DONG H F, et al. Bayesian inversion of multimode interface-wave dispersion from ambient noise[J]. IEEE J Ocean Eng, 2012, 37(3): 407-416.
    [19] DOSSO S E, WILMUT M J. Uncertainty estimation in simultaneous Bayesian tracking and environmental inversion[J]. J Acoust Soc Am, 2008, 124(1): 82-97.
    [20] EBERHART R C, KENNEDY J. A new optimizer using particle swarm theory[C]// Proceedings of the Sixth International Symposium on Micro Machine and Human Science. Nagoya, 1995: 39-43.
    [21] KENNEDY J, EBERHART R C. Particle swarm optimization[C]// Proceedings of IEEE International Conference on Neural Networks. Piscataway, 1995: 1942-1948.
    [22] 师学明, 肖敏, 范建柯, 等. 大地电磁阻尼粒子群优化反演法研究[J]. 地球物理学报, 2009, 52(4): 1114-1120. (SHI Xue-ming, XIAO Min, FAN Jian-ke, et a1. The damped PSO algorithm and its application for magnetotelluric sounding data inversion[J]. Chinese J Geophys, 2009, 52(4): 1114-1120. (in Chinese))
    [23] 唐贤伦. 混沌粒子群优化算法理论及应用[D]. 重庆: 重庆大学, 2007. (TANG Xian-lun. The theory and application of particle swarm optimization algorithm based on chaos[D]. Chongqing: Chongqing University, 2007. (in Chinese))
    [24] 梁青. 多模式瑞雷波频散曲线反演研究[D]. 武汉: 中国地质大学, 2007. (LIANG Qing. Inversion of multimode rayleigh-wave dispersion curve[D]. Wuhan: China University of Geoseience, 2007. (in Chinese))
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-08-03
  • 发布日期:  2015-03-01

目录

    /

    返回文章
    返回