• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

浅埋爆炸成坑对竖井结构动力响应影响的离心模型试验研究

赵凤奎, 管龙华, 张德志, 卢强, 朱斌, 汪玉冰

赵凤奎, 管龙华, 张德志, 卢强, 朱斌, 汪玉冰. 浅埋爆炸成坑对竖井结构动力响应影响的离心模型试验研究[J]. 岩土工程学报, 2025, 47(3): 636-644. DOI: 10.11779/CJGE20231169
引用本文: 赵凤奎, 管龙华, 张德志, 卢强, 朱斌, 汪玉冰. 浅埋爆炸成坑对竖井结构动力响应影响的离心模型试验研究[J]. 岩土工程学报, 2025, 47(3): 636-644. DOI: 10.11779/CJGE20231169
ZHAO Fengkui, GUAN Longhua, ZHANG Dezhi, LU Qiang, ZHU Bin, WANG Yubing. Centrifugal model tests on cratering effects on dynamic response of silo under shallowly buried explosion[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(3): 636-644. DOI: 10.11779/CJGE20231169
Citation: ZHAO Fengkui, GUAN Longhua, ZHANG Dezhi, LU Qiang, ZHU Bin, WANG Yubing. Centrifugal model tests on cratering effects on dynamic response of silo under shallowly buried explosion[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(3): 636-644. DOI: 10.11779/CJGE20231169

浅埋爆炸成坑对竖井结构动力响应影响的离心模型试验研究  English Version

基金项目: 

国家自然科学基金基础科学中心项目 51988101

详细信息
    作者简介:

    赵凤奎(1995—),男,硕士研究生,主要从事地下结构抗爆离心试验研究。E-mail: 22112017@zju.edu.cn

    通讯作者:

    汪玉冰, E-mail:wangyubing@zju.edu.cn

  • 中图分类号: TU43; O383

Centrifugal model tests on cratering effects on dynamic response of silo under shallowly buried explosion

  • 摘要: 为研究发生在竖井结构近区浅埋爆炸成坑效应,依托浙江大学ZJU-400土工离心机开展了3组竖井结构受侧向浅埋爆炸作用离心模型试验,通过对砂土抛掷成坑过程、结构内壁加速度和外壁应变响应分析,得出以下主要结论:相比自由场中爆炸,发生在竖井结构近区的浅埋爆炸,若最大瞬态爆腔未与结构发生接触,结构物的存在将对爆腔膨胀产生约束作用并造成弹坑体积发生缩减;若瞬态爆腔膨胀至竖井边壁,由于爆轰气体与竖井间的碰撞挤压作用,表观弹坑将呈现出不对称性且弹坑体积也将得到增大;随着爆源至结构距离的增加或爆源埋深的减小,结构对弹坑形成的影响逐渐减弱。爆炸成坑对结构动态响应影响显著,相比埋深较大的结构部分,接近或暴露于弹坑范围内的结构部分在受到爆炸冲击时振动响应更为强烈,同时也易产生更大的变形损伤。本研究可为竖井结构的抗爆设计提供依据,也可为后续此类结构在爆炸荷载冲击下的相关性能指标和毁伤效应研究提供参考。
    Abstract: To study the effects of shallowly buried explosion cratering occurring near the silo, three centrifugal model tests are conducted using the geotechnical centrifuge ZJU400 at Zhejiang University. The cratering process, inner acceleration response and explosion-surface strain response of the silo are analyzed. The results show that: compared with the explosion in the free field, if the maximum transient chamber does not contact with the silo for the shallowly buried explosion occurring near the silo, the volume of crater will shrink because the existence of the structures will constrain the expansion of the chamber. If the transient chamber is in contact with the silo, the apparent crater will be asymmetrical, and the cratering volume will increase because of the collision and extrusion between the explosion gas and the silo. With the increase of the distance between the explosion and the silo or the decrease of the buried depth of explosion, the influences of structure on cratering will gradually decrease. The dynamic response of the silo is significantly affected by the cratering process, that the part of the silo near or exposed within the crater is more susceptible to generate larger deformation and stronger vibration response when subjected to explosion compared to the part with larger buried depth. The research results provide experimental reference for anti-blast design of silo structures, and also throw insight to the researches on the related performance indices and damage effects of such structures under explosion.
  • 图  1   试验材料

    Figure  1.   Test materials

    图  2   竖井结构传感器布设方案

    Figure  2.   Layout of sensors for silo

    图  3   离心试验布置示意图

    Figure  3.   Layout of centrifugal model tests

    图  4   爆炸试验舱布置

    Figure  4.   Setup of explosive test chamber

    图  5   CE-2试验浅埋爆炸抛掷成坑

    Figure  5.   Cratering process of buried explosion in CE-2

    图  6   浅埋爆炸弹坑轮廓及剖面图

    Figure  6.   Apparent cratering profiles in buried explosion

    图  7   弹坑等高线图

    Figure  7.   Contour map of cratering

    图  8   受结构影响爆腔扩张运动分析图

    Figure  8.   Diagram of chamber expansion motion influenced by structures

    图  9   竖井结构内壁加速度时程曲线

    Figure  9.   Time-history curves of inner acceleration of silo

    图  10   竖井迎爆面应变峰值分布

    Figure  10.   Distribution of peak strain in blast-facing surface of silo

    表  1   离心模型试验主要物理量相似比关系

    Table  1   Scaling relationships of main parameters in centrifugal model tests

    序号 物理量 量纲 相似比尺
    (模型∶原型)
    1 结构尺寸 [L] 1/106
    2 材料密度 [ML-3] 1
    3 弹性模量 [ML-1T-2] 1
    4 泊松比 1
    5 能量 [ML2T-2] 1/1063
    6 质量 [M] 1/1063
    7 时间 [T] 1/106
    8 应力、压强 [ML-1T-2] 1
    9 振动加速度 [LT-2] 106
    10 振动频率 [T-1] 106
    11 应变 1
    下载: 导出CSV

    表  2   离心模型试验工况

    Table  2   Conditions of centrifugal model tests

    试验编号 工况 爆源当量W 爆源埋深DoB 爆距R
    CE-1 模型 1 g 80 mm 70 mm
    原型 1.2 t 8.5 m 7.4 m
    CE-2 模型 1 g 80 mm 50 mm
    原型 1.2 t 8.5 m 5.3 m
    CE-3 模型 1 g 40 mm 50 mm
    原型 1.2 t 4.25 m 5.3 m
    下载: 导出CSV
  • [1] 张向阳, 顾金才, 沈俊, 等. 锚固洞室模型与原型抗爆试验结果对比[J]. 防护工程, 2012, 34(1): 6-12.

    ZHANG Xiangyang, GU Jincai, SHEN Jun, et al. The comparison of the results of model test and field test on anchored Caverns under explosion loading[J]. Protective Engineering, 2012, 34(1): 6-12. (in Chinese)

    [2] 孙善政, 卢浩, 陈昊, 等. 爆炸作用下土中竖井结构荷载分布规律[J]. 陆军工程大学学报, 2023, 2(1): 18-27.

    SUN Shanzheng, LU Hao, CHEN Hao, et al. Distribution of explosion load on silo structure in soil[J]. Journal of Army Engineering University of PLA, 2023, 2(1): 18-27. (in Chinese)

    [3]

    KOBIELAK S, KRAUTHAMMER T. Dynamic response of buried silo caused by underground explosion[J]. Shock and Vibration, 2004, 11(5/6): 665-684.

    [4] 李世民, 李晓军, 冯进技. 防护工程离心模型试验研究现状及展望[J]. 防护工程, 2017, 39(5): 70-78.

    LI Shimin, LI Xiaojun, FENG Jinji. Research status and prospect of protective engineering centrifuge model test[J]. Protective Engineering, 2017, 39(5): 70-78. (in Chinese)

    [5] 《岩土离心模拟技术的原理和工程应用》编委会. 岩土离心模拟技术的原理和工程应用[M]. 武汉: 长江出版社, 2011.

    《Geotechnical Centrifuge Modelling Techniques and Applications》 Editional Board. Geotechnical Centrifuge Modelling Techniques and Applications[M]. Wuhan: Changjiang Press, 2011. (in Chinese)

    [6]

    HOLSAPPLE K, SCHMIDT R. A material-strength model for apparent crater volume[C]// Lunar and Planetary Science Conference, Houston, 1979.

    [7]

    SCHMIDT R. A centrifuge cratering experiment-development of a gravity-scaled yield parameter[C]// Impact and Explosion Cratering, New York, 1977.

    [8]

    SCHMIDT R M, HOUSEN K R. Some recent advances in the scaling of impact and explosion cratering[J]. International Journal of Impact Engineering, 1987, 5(1/2/3/4): 543-560.

    [9]

    NIELSEN J P. The Centrifugal Simulation of Blast Parameter[R]. Engineering and Services Laboratory, Air Force Engineering and Services Center Tyndall Air Force Base, Florida, 1983.

    [10]

    GUAN L H, ZHAO F K, LU Q, et al. Centrifuge modelling of blast effects in dry sand: Coriolis effect and soil arching[J]. International Journal of Physical Modelling in Geotechnics, 2024, 24(2): 92-109.

    [11] 马立秋. 爆炸荷载下城市浅埋隧道动力离心模型试验和数值研究[D]. 北京: 清华大学, 2010.

    MA Liqiu. Centrifugal Modeling and Numerical Research for Urban Shallow-Buried Tunnel under Blasting[D]. Beijing: Tsinghua University, 2010. (in Chinese)

    [12]

    KUTTER B L, O'LEARY L M, THOMPSON P Y, et al. Gravity-scaled tests on blast-induced soil-structure interaction[J]. Journal of Geotechnical Engineering, 1988, 114(4): 431-447.

    [13]

    BLANCHAT T, DAVIE N, CALDERONE J. Development of Explosive Event Scale Model Testing Capability at Sandia`s Large Scale Centrifuge Facility[R]. Sandia National Lab(SNL-NM), Albuquerque, NM (United States), 1998.

    [14]

    LIU H B, NEZILI S. Centrifuge modeling of underground tunnel in saturated soil subjected to internal blast loading[J]. Journal of Performance of Constructed Facilities, 2016, 30(2): 06015001.

    [15] 杨俊杰. 相似理论与结构模型试验[M]. 武汉: 武汉理工大学出版社, 2005.

    YANG Junjie. Similarity Theory and Structure Model Test[M]. Wuhan: Wuhan University of Technology Press, 2005. (in Chinese)

    [16] 金丰年, 袁小军, 周健南, 等. 爆炸荷载作用下大跨度动被覆结构荷载分布规律探讨[J]. 解放军理工大学学报: 自然科学版, 2011, 12(6): 635-640.

    JIN Fengnian, YUAN Xiaojun, ZHOU Jiannan, et al. Distribution law of blast loads on large-span compound structure[J]. Journal of PLA University of Science and Technology: Natural Science, 2011, 12(6): 635-640. (in Chinese)

    [17] 陈云敏, 韩超, 凌道盛, 等. ZJU400离心机研制及其振动台性能评价[J]. 岩土工程学报, 2011, 33(12): 1887-1894. http://cge.nhri.cn/article/id/14444

    CHEN Yunmin, HAN Chao, LING Daosheng, et al. Development of geotechnical centrifuge ZJU400 and performance assessment of its shaking table system[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(12): 1887-1894. (in Chinese) http://cge.nhri.cn/article/id/14444

    [18] 凌道盛, 施昌宇, 郑建靖, 等. 离心模型试验物质运动非惯性系效应[J]. 岩土工程学报, 2021, 43(2): 226-235. doi: 10.11779/CJGE202102002

    LING Daosheng, SHI Changyu, ZHENG Jianjing, et al. Non-inertial effects on matter motion in centrifugal model tests[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(2): 226-235. (in Chinese) doi: 10.11779/CJGE202102002

    [19] HENRYCH J. 爆炸动力学及其应用[M]. 熊建国, 译. 北京: 科学出版社, 1987.

    HENRYCH J. The Dynamics of Explosion and Its Use[M]. XIONG Jianguo, trans. Beijing: Science Press, 1987. (in Chinese)

    [20]

    CHERNIKOV A G, SHER E N. A quasistatic model of a confined explosion of a concentrated charge in a bed and in a block[J]. Soviet Mining, 1990, 26(4): 355-362.

    [21] 王军. 硝酸肼镍起爆药扩大应用[D]. 南京: 南京理工大学, 2008.

    WANG Jun. The Expanded Application of Nickelous Hydrazine Nitrate Primer[D]. Nanjing: Nanjing University of Science and Technology, 2008. (in Chinese)

    [22] 管龙华, 卢强, 赵凤奎, 等. 砂土爆炸成坑离心模型试验相似律研究[J]. 岩土工程学报, 2024, 46(7): 1462-1470. doi: 10.11779/CJGE20230751

    GUAN Longhua, LU Qiang, ZHAO Fengkui, et al. Scaling laws for centrifuge modelling of explosion-induced cratering in sand[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1462-1470. (in Chinese) doi: 10.11779/CJGE20230751

    [23] 钱七虎, 王明洋. 高等防护结构计算理论[M]. 南京: 凤凰出版传媒集团, 2009.

    QIAN Qihu, WANG Mingyang. Calculation Theory for Advanced Protective Structure[M]. Nanjing: Phoenix Science Press, 2009. (in Chinese)

    [24] 马维. 地下管道结构爆振效应和冲击破坏行为实验[J]. 解放军理工大学学报(自然科学版), 2008, 9(1): 39-46.

    MA Wei. Experimental investigations on effects of blast vibration and behaviors of impacting failure of underground pipeline structures[J]. Journal of PLA University of Science and Technology, 2008, 9(1): 39-46. (in Chinese)

    [25] 李杰, 郭纬, 徐天涵, 等. 地下爆炸等效当量及耦合地冲击计算[J]. 岩石力学与工程学报, 2023, 42(增刊2): 4064-4072.

    LI Jie, GUO Wei, el at. Calculation of equivalent and coupled ground shock of underground explosion[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(S2): 4064-4072. (in Chinese)

图(10)  /  表(2)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-27
  • 网络出版日期:  2024-07-15
  • 刊出日期:  2025-02-28

目录

    /

    返回文章
    返回