Radial filtration model for prefabricated vertical drain treatment of slurry considering Poisson's effects
-
摘要: 真空预压处理流泥地基时,仅排水板附近的土体得到明显加固,以排水板为轴线形成一个凸出地表的“土柱”。土柱作为流泥地基真空预压处理的特有现象,导致流泥地基淤堵严重、处理效果差。根据流泥固液两相的连续、运动、平衡以及土柱移动边界方程,并考虑土柱土体泊松效应,在柱坐标系下建立了流泥轴对称真空过滤模型,获得了流泥地基真空预压过程中的土柱生长规律和土柱淤堵性状,并与PIV试验进行了对比验证。结果表明:土柱内渗透系数降幅高达97%,致密土柱是淤堵的本质;泊松效应和真空荷载幅值对土柱半径以及流泥固结效果的影响十分明显;低幅值真空荷载有利于形成半径小且较为疏松的淤堵区,从而缓解淤堵性状。Abstract: During the vacuum preloading treatment of slurry ground, the significant improvement is only observed in the soil adjacent to the prefabricated vertical drain (PVD), resulting in the formation of a protruding "soil column" with the PVD as its axis. The presence of soil column, as a unique phenomenon of slurry ground pre-treatment, leads to severe clogging and ineffective treatment results. An axisymmetric vacuum filtration model is established in the coordinate system using the continuity, kinematic and equilibrium equations for both liquid and solid phases of slurry. The moving boundary condition and Poisson's effects associated with the soil column are also incorporated. The growth pattern and clogging behavior of soil columns are investigated through the model and verified by comparing the predicted results with the particle image velocity (PIV) ones. The results show that reduction of permeability coefficient within the soil column is up to 97%, indicating that the dense soil column is the essence of clogging. Furthermore, notable influences of the Poisson's effects and negative pressure on the growth and compression behavior of the soil column are observed. The low amplitude negative pressure promotes formation of the relatively small loose soil columns, thereby mitigating the clogging behavior.
-
Keywords:
- slurry /
- vacuum preloading /
- filtration /
- soil column /
- clogging behavior /
- consolidation /
- Poisson's effect
-
-
表 1 流泥土样基本参数
Table 1 Physical and mechanical parameters of main soils
物理
参数相对质量密度Gs 液限
wL/%塑限wP/% 平均粒径d50/μ m 台州流泥 2.67 40 23 11 温州流泥 2.68 53 32 5 表 2 计算参数取值
Table 2 Parameters used in PIV validation of proposed theory
土样 本构参数 真空
荷载P0/kPaPVD流动
阻力R/m-1PVD等效半径rw/m 泥浆初始高度
H0/m等效影响区半径
S/ mε0s δ β pa/kPa K0/10-15 m2 台州流泥 0.3675 0.8548 0.1067 1.3 9.283 80 21.8 0.033 0.3 0.267 温州流泥 0.3832 0.6596 0.076 1.3 3.601 80 100 0.033 0.3 0.267 -
[1] CHU J, BO M W, CHOA V. Improvement of ultra-soft soil using prefabricated vertical drains[J]. Geotextiles and Geomembranes, 2006, 24(6): 339-348. doi: 10.1016/j.geotexmem.2006.04.004
[2] CAI Y Q, QIAO H H, WANG J, et al. Experimental tests on effect of deformed prefabricated vertical drains in dredged soil on consolidation via vacuum preloading[J]. Engineering Geology, 2017, 222: 10-19. doi: 10.1016/j.enggeo.2017.03.020
[3] 鲍树峰, 娄炎, 董志良, 等. 新近吹填淤泥地基真空固结失效原因分析及对策[J]. 岩土工程学报, 2014, 36(7): 1350-1359. doi: 10.11779/CJGE201407020 BAO Shufeng, LOU Yan, DONG Zhiliang, et al. Causes and countermeasures for vacuum consolidation failure of newly-dredged mud foundation[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(7): 1350-1359. (in Chinese) doi: 10.11779/CJGE201407020
[4] 蔡袁强. 吹填淤泥真空预压固结机理与排水体防淤堵处理技术[J]. 岩土工程学报, 2021, 43(2): 201-225. doi: 10.11779/CJGE202102001 CAI Yuanqiang. Consolidation mechanism of vacuum preloading for dredged slurry and anti-clogging method for drains[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(2): 201-225. (in Chinese) doi: 10.11779/CJGE202102001
[5] SUN H L, HE Z L, GENG X Y, et al. Formation mechanism of clogging of dredge slurry under vacuum preloading by using digital image technology. Canadian Geotechnical Journal, 2021, 99: 1-7.
[6] CHI T E. Introduction to cake filtration analyses, experiments, and applications[M]. Amsterdam: Elsevier, 2006.
[7] STAMATAKIS K, CHI T E. Cake formation and growth in cake filtration[J]. Chemical Engineering Science, 1991, 46(8): 1917-1933. doi: 10.1016/0009-2509(91)80153-P
[8] 谢康和, 曾国熙. 等应变条件下的砂井地基固结解析理论[J]. 岩土工程学报, 1989, 11(2): 3-17. doi: 10.3321/j.issn:1000-4548.1989.02.002 XIE Kanghe, ZENG Guoxi. Consolidation theories for drain wells under equal strain condition[J]. Chinese Journal of Geotechnical Engineering, 1989, 11(2): 3-17. (in Chinese) doi: 10.3321/j.issn:1000-4548.1989.02.002
[9] 江辉煌, 赵有明, 刘国楠, 等. 砂井地基的大变形固结[J]. 岩土工程学报, 2011, 33(2): 302-308. http://cge.nhri.cn/article/id/13919 JIANG Huihuang, ZHAO Youming, LIU Guonan, et al. Large strain consolidation of soft ground with vertical drains[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(2): 302-308. (in Chinese) http://cge.nhri.cn/article/id/13919
[10] 曹玉鹏, 孙宗军, 丁建文, 等. 高含水率疏浚泥轴对称大应变固结模型[J]. 岩土工程学报, 2016, 38(10): 1904-1910. doi: 10.11779/CJGE201610021 CAO Yupeng, SUN Zongjun, DING Jianwen, et al. Axisymmetric large-strain consolidation model for dredged clay with high water content[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1904-1910. (in Chinese) doi: 10.11779/CJGE201610021
[11] 黄朝煊. 吹填土地基非线性大应变固结计算研究[J]. 岩石力学与工程学报, 2020, 39(增刊2): 3595-3606. HUANG Chaoxuan. Research on nonlinear large strain consolidation of dredger fill[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(S2): 3595-3606. (in Chinese)
[12] 李传勋, 谢康和. 考虑非达西渗流和变荷载影响的软土大变形固结分析[J]. 岩土工程学报, 2015, 37(6): 1002-1009. doi: 10.11779/CJGE201506005 LI Chuanxun, XIE Kanghe. Large-strain consolidation of soft clay with non-Darcian flow by considering time-dependent load[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(6): 1002-1009. (in Chinese) doi: 10.11779/CJGE201506005
[13] 洪振舜. 吹填土的一维大变形固结计算模型[J]. 河海大学学报, 1987, 15(6): 27-36. doi: 10.3321/j.issn:1000-1980.1987.06.005 HONG Zhenshun. One- dimensional mathematical model for large-strain consolidation of dredged-fill soil[J]. Journal of Hohai University (Natural Sciences), 1987, 15(6): 27-36. (in Chinese) doi: 10.3321/j.issn:1000-1980.1987.06.005
[14] 周亚东, 王保田, 邓安. 分段线性电渗-堆载耦合固结模型[J]. 岩土工程学报, 2013, 35(12): 2311-2316. http://cge.nhri.cn/article/id/15612 ZHOU Yadong, WANG Baotian, DENG An. Piecewise-linear model for electro-osmosis-surcharge preloading coupled consolidation[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(12): 2311-2316. (in Chinese) http://cge.nhri.cn/article/id/15612
[15] WANG P, HAN Y B, WANG J, et al. Deformation characteristics of soil between prefabricated vertical drains under vacuum preloading[J]. Geotextiles and Geomembranes, 2019, 47(6): 798-802. doi: 10.1016/j.geotexmem.2019.103493
[16] ZHOU Y, CHAI J C. Equivalent 'smear' effect due to non-uniform consolidation surrounding a PVD[J]. Géotechnique, 2017, 67(5): 410-419. doi: 10.1680/jgeot.16.P.087
[17] INDRARATNA B, RUJIKIATKAMJORN C, SATHANANTHAN I. Radial consolidation of clay using compressibility indices and varying horizontal permeability[J]. Canadian Geotechnical Journal, 2005, 42(5): 1330-1341. doi: 10.1139/t05-052
[18] 卢萌盟, 白垚, 杨康. 考虑排水板淤堵时空变化的多元复合地基固结性状研究[J]. 岩土工程学报, 2023, 45(8): 1564-1573. doi: 10.11779/CJGE20220590 LU Mengmeng, BAI Yao, YANG Kang. Consolidation behaviors of multi-reinforcement composite ground considering time- and depth-dependent clogging effects of prefabricated vertical drains[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(8): 1564-1573. (in Chinese) doi: 10.11779/CJGE20220590
[19] STICKLAND A D, WHITE L R, SCALES P J. Models of rotary vacuum drum and disc filters for flocculated suspensions[J]. AIChE Journal, 2011, 57(4): 951-961. doi: 10.1002/aic.12310
[20] SHI L, YIN X, YE X Q, et al. Radial filtration model of clogging column for prefabricated vertical drain treatment of slurry[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2023, 149(1): 04022118. doi: 10.1061/(ASCE)GT.1943-5606.0002925
[21] KU T, MAYNE P W. Evaluating the in situ lateral stress coefficient (K0) of soils via paired shear wave velocity modes[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(5): 775-787. doi: 10.1061/(ASCE)GT.1943-5606.0000756
[22] 雷国辉, 许波, 张旭东. 堆载预压径竖向固结等体积应变解答[J]. 岩土工程学报, 2013, 35(1): 76-84. http://cge.nhri.cn/article/id/14920 LEI Guohui, XU Bo, ZHANG Xudong. Equal volumetric strain solutions for radial and vertical consolidation with vertical drains under surcharge preloading[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(1): 76-84. (in Chinese) http://cge.nhri.cn/article/id/14920
[23] SHI L, JIANG J W, WANG Q Q, et al. Numerical study on movements of soil particles forming clogging layer during vacuum preloading of dredged slurry[J]. Granular Matter, 2021, 23(4): 92. doi: 10.1007/s10035-021-01151-0
[24] TILLER F M, KWON J H. Role of porosity in filtration: XIII. Behavior of highly compactible cakes[J]. AIChE Journal, 1998, 44(10): 2159-2167. doi: 10.1002/aic.690441005
[25] GENG X, YU H S. A large-strain radial consolidation theory for soft clays improved by vertical drains[J]. Géotechnique, 2017, 67(11): 1020-1028. doi: 10.1680/jgeot.15.T.013
[26] JAVIERRE E, VUIK C, VERMOLEN F J, et al. A comparison of numerical models for one-dimensional Stefan problems[J]. Journal of Computational and Applied Mathematics, 2006, 192(2): 445-459. doi: 10.1016/j.cam.2005.04.062
[27] SHI L, YIN X, SUN H L, et al. A new approach for determining compressibility and permeability characteristics of dredged slurries with high water content[J]. Canadian Geotechnical Journal, 2022, 59(6): 965-977. doi: 10.1139/cgj-2020-0676