• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

考虑泊松效应的流泥轴对称真空过滤理论

蔡袁强, 叶晓倩, 史吏

蔡袁强, 叶晓倩, 史吏. 考虑泊松效应的流泥轴对称真空过滤理论[J]. 岩土工程学报, 2025, 47(2): 243-254. DOI: 10.11779/CJGE20231124
引用本文: 蔡袁强, 叶晓倩, 史吏. 考虑泊松效应的流泥轴对称真空过滤理论[J]. 岩土工程学报, 2025, 47(2): 243-254. DOI: 10.11779/CJGE20231124
CAI Yuanqiang, YE Xiaoqian, SHI Li. Radial filtration model for prefabricated vertical drain treatment of slurry considering Poisson's effects[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(2): 243-254. DOI: 10.11779/CJGE20231124
Citation: CAI Yuanqiang, YE Xiaoqian, SHI Li. Radial filtration model for prefabricated vertical drain treatment of slurry considering Poisson's effects[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(2): 243-254. DOI: 10.11779/CJGE20231124

考虑泊松效应的流泥轴对称真空过滤理论  English Version

基金项目: 

离岸岛群深厚软土地基交通基础设施建设关键技术 2023YFB2604200

国家自然科学基金项目 52278377

国家自然科学基金项目 U2006225

浙江省自然科学基金项目 LZ22E080009

详细信息
    作者简介:

    蔡袁强(1965—),男,博士,教授,主要从事地基处理、基础工程学、土动力学等方面的教学和科研工作。E-mail: caiyq@zju.edu.cn

    通讯作者:

    史吏, E-mail:418194187@qq.com

  • 中图分类号: TU432

Radial filtration model for prefabricated vertical drain treatment of slurry considering Poisson's effects

  • 摘要: 真空预压处理流泥地基时,仅排水板附近的土体得到明显加固,以排水板为轴线形成一个凸出地表的“土柱”。土柱作为流泥地基真空预压处理的特有现象,导致流泥地基淤堵严重、处理效果差。根据流泥固液两相的连续、运动、平衡以及土柱移动边界方程,并考虑土柱土体泊松效应,在柱坐标系下建立了流泥轴对称真空过滤模型,获得了流泥地基真空预压过程中的土柱生长规律和土柱淤堵性状,并与PIV试验进行了对比验证。结果表明:土柱内渗透系数降幅高达97%,致密土柱是淤堵的本质;泊松效应和真空荷载幅值对土柱半径以及流泥固结效果的影响十分明显;低幅值真空荷载有利于形成半径小且较为疏松的淤堵区,从而缓解淤堵性状。
    Abstract: During the vacuum preloading treatment of slurry ground, the significant improvement is only observed in the soil adjacent to the prefabricated vertical drain (PVD), resulting in the formation of a protruding "soil column" with the PVD as its axis. The presence of soil column, as a unique phenomenon of slurry ground pre-treatment, leads to severe clogging and ineffective treatment results. An axisymmetric vacuum filtration model is established in the coordinate system using the continuity, kinematic and equilibrium equations for both liquid and solid phases of slurry. The moving boundary condition and Poisson's effects associated with the soil column are also incorporated. The growth pattern and clogging behavior of soil columns are investigated through the model and verified by comparing the predicted results with the particle image velocity (PIV) ones. The results show that reduction of permeability coefficient within the soil column is up to 97%, indicating that the dense soil column is the essence of clogging. Furthermore, notable influences of the Poisson's effects and negative pressure on the growth and compression behavior of the soil column are observed. The low amplitude negative pressure promotes formation of the relatively small loose soil columns, thereby mitigating the clogging behavior.
  • 图  1   平面过滤过程及轴对称过滤示意图

    Figure  1.   (a)unidimensional coordinate; (b) cylindrical coordinate

    图  2   流泥轴对称过滤模型示意图

    Figure  2.   Schematic diagram of formation and growth

    图  3   土柱内土单元应力平衡分析

    Figure  3.   Stress equilibrium analysis for soil element within soil column

    图  4   流泥真空预压工况

    Figure  4.   Operating conditions of vacuum preloading for slurry

    图  5   节点划分

    Figure  5.   Distribution of grid points

    图  6   土柱半径随时间变化

    Figure  6.   Variation of radius of soil column with time

    图  7   孔压消散随时间变化

    Figure  7.   Variation of pore water dissipation with time

    图  8   泥浆液面高度随时间变化曲线

    Figure  8.   Heights of slurry surface versus time

    图  9   真空荷载幅值对土柱大小的影响

    Figure  9.   Effects of negative pressure on size of soil column

    图  10   径向移动边界位置随时间变化曲线

    Figure  10.   Radial moving boundary versus time

    图  11   土柱内部淤堵性状

    Figure  11.   Internal clogging characteristics of soil column

    图  12   淤堵区半径随时间变化曲线

    Figure  12.   Radii of clogging column

    图  13   排水板滤膜处表观流速随时间变化曲线

    Figure  13.   Temporal variation in apparent flow velocity of water drained through PVD membrane

    图  14   土柱半径随时间变化

    Figure  14.   Variation of radius of soil column with time

    图  15   孔压消散随时间变化:r=25 mm

    Figure  15.   Variation of pore water dissipation with time: r=25 mm

    图  16   孔压消散随时间变化:r=50 mm

    Figure  16.   Variation of pore water dissipation with time: r=50 mm

    表  1   流泥土样基本参数

    Table  1   Physical and mechanical parameters of main soils

    物理
    参数
    相对质量密度Gs 液限
    wL/%
    塑限wP/% 平均粒径d50/μ m
    台州流泥 2.67 40 23 11
    温州流泥 2.68 53 32 5
    下载: 导出CSV

    表  2   计算参数取值

    Table  2   Parameters used in PIV validation of proposed theory

    土样 本构参数 真空
    荷载P0/kPa
    PVD流动
    阻力R/m-1
    PVD等效半径rw/m 泥浆初始高度
    H0/m
    等效影响区半径
    S/ m
    ε0s δ β pa/kPa K0/10-15 m2
    台州流泥 0.3675 0.8548 0.1067 1.3 9.283 80 21.8 0.033 0.3 0.267
    温州流泥 0.3832 0.6596 0.076 1.3 3.601 80 100 0.033 0.3 0.267
    下载: 导出CSV
  • [1]

    CHU J, BO M W, CHOA V. Improvement of ultra-soft soil using prefabricated vertical drains[J]. Geotextiles and Geomembranes, 2006, 24(6): 339-348. doi: 10.1016/j.geotexmem.2006.04.004

    [2]

    CAI Y Q, QIAO H H, WANG J, et al. Experimental tests on effect of deformed prefabricated vertical drains in dredged soil on consolidation via vacuum preloading[J]. Engineering Geology, 2017, 222: 10-19. doi: 10.1016/j.enggeo.2017.03.020

    [3] 鲍树峰, 娄炎, 董志良, 等. 新近吹填淤泥地基真空固结失效原因分析及对策[J]. 岩土工程学报, 2014, 36(7): 1350-1359. doi: 10.11779/CJGE201407020

    BAO Shufeng, LOU Yan, DONG Zhiliang, et al. Causes and countermeasures for vacuum consolidation failure of newly-dredged mud foundation[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(7): 1350-1359. (in Chinese) doi: 10.11779/CJGE201407020

    [4] 蔡袁强. 吹填淤泥真空预压固结机理与排水体防淤堵处理技术[J]. 岩土工程学报, 2021, 43(2): 201-225. doi: 10.11779/CJGE202102001

    CAI Yuanqiang. Consolidation mechanism of vacuum preloading for dredged slurry and anti-clogging method for drains[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(2): 201-225. (in Chinese) doi: 10.11779/CJGE202102001

    [5]

    SUN H L, HE Z L, GENG X Y, et al. Formation mechanism of clogging of dredge slurry under vacuum preloading by using digital image technology. Canadian Geotechnical Journal, 2021, 99: 1-7.

    [6]

    CHI T E. Introduction to cake filtration analyses, experiments, and applications[M]. Amsterdam: Elsevier, 2006.

    [7]

    STAMATAKIS K, CHI T E. Cake formation and growth in cake filtration[J]. Chemical Engineering Science, 1991, 46(8): 1917-1933. doi: 10.1016/0009-2509(91)80153-P

    [8] 谢康和, 曾国熙. 等应变条件下的砂井地基固结解析理论[J]. 岩土工程学报, 1989, 11(2): 3-17. doi: 10.3321/j.issn:1000-4548.1989.02.002

    XIE Kanghe, ZENG Guoxi. Consolidation theories for drain wells under equal strain condition[J]. Chinese Journal of Geotechnical Engineering, 1989, 11(2): 3-17. (in Chinese) doi: 10.3321/j.issn:1000-4548.1989.02.002

    [9] 江辉煌, 赵有明, 刘国楠, 等. 砂井地基的大变形固结[J]. 岩土工程学报, 2011, 33(2): 302-308. http://cge.nhri.cn/article/id/13919

    JIANG Huihuang, ZHAO Youming, LIU Guonan, et al. Large strain consolidation of soft ground with vertical drains[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(2): 302-308. (in Chinese) http://cge.nhri.cn/article/id/13919

    [10] 曹玉鹏, 孙宗军, 丁建文, 等. 高含水率疏浚泥轴对称大应变固结模型[J]. 岩土工程学报, 2016, 38(10): 1904-1910. doi: 10.11779/CJGE201610021

    CAO Yupeng, SUN Zongjun, DING Jianwen, et al. Axisymmetric large-strain consolidation model for dredged clay with high water content[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1904-1910. (in Chinese) doi: 10.11779/CJGE201610021

    [11] 黄朝煊. 吹填土地基非线性大应变固结计算研究[J]. 岩石力学与工程学报, 2020, 39(增刊2): 3595-3606.

    HUANG Chaoxuan. Research on nonlinear large strain consolidation of dredger fill[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(S2): 3595-3606. (in Chinese)

    [12] 李传勋, 谢康和. 考虑非达西渗流和变荷载影响的软土大变形固结分析[J]. 岩土工程学报, 2015, 37(6): 1002-1009. doi: 10.11779/CJGE201506005

    LI Chuanxun, XIE Kanghe. Large-strain consolidation of soft clay with non-Darcian flow by considering time-dependent load[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(6): 1002-1009. (in Chinese) doi: 10.11779/CJGE201506005

    [13] 洪振舜. 吹填土的一维大变形固结计算模型[J]. 河海大学学报, 1987, 15(6): 27-36. doi: 10.3321/j.issn:1000-1980.1987.06.005

    HONG Zhenshun. One- dimensional mathematical model for large-strain consolidation of dredged-fill soil[J]. Journal of Hohai University (Natural Sciences), 1987, 15(6): 27-36. (in Chinese) doi: 10.3321/j.issn:1000-1980.1987.06.005

    [14] 周亚东, 王保田, 邓安. 分段线性电渗-堆载耦合固结模型[J]. 岩土工程学报, 2013, 35(12): 2311-2316. http://cge.nhri.cn/article/id/15612

    ZHOU Yadong, WANG Baotian, DENG An. Piecewise-linear model for electro-osmosis-surcharge preloading coupled consolidation[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(12): 2311-2316. (in Chinese) http://cge.nhri.cn/article/id/15612

    [15]

    WANG P, HAN Y B, WANG J, et al. Deformation characteristics of soil between prefabricated vertical drains under vacuum preloading[J]. Geotextiles and Geomembranes, 2019, 47(6): 798-802. doi: 10.1016/j.geotexmem.2019.103493

    [16]

    ZHOU Y, CHAI J C. Equivalent 'smear' effect due to non-uniform consolidation surrounding a PVD[J]. Géotechnique, 2017, 67(5): 410-419. doi: 10.1680/jgeot.16.P.087

    [17]

    INDRARATNA B, RUJIKIATKAMJORN C, SATHANANTHAN I. Radial consolidation of clay using compressibility indices and varying horizontal permeability[J]. Canadian Geotechnical Journal, 2005, 42(5): 1330-1341. doi: 10.1139/t05-052

    [18] 卢萌盟, 白垚, 杨康. 考虑排水板淤堵时空变化的多元复合地基固结性状研究[J]. 岩土工程学报, 2023, 45(8): 1564-1573. doi: 10.11779/CJGE20220590

    LU Mengmeng, BAI Yao, YANG Kang. Consolidation behaviors of multi-reinforcement composite ground considering time- and depth-dependent clogging effects of prefabricated vertical drains[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(8): 1564-1573. (in Chinese) doi: 10.11779/CJGE20220590

    [19]

    STICKLAND A D, WHITE L R, SCALES P J. Models of rotary vacuum drum and disc filters for flocculated suspensions[J]. AIChE Journal, 2011, 57(4): 951-961. doi: 10.1002/aic.12310

    [20]

    SHI L, YIN X, YE X Q, et al. Radial filtration model of clogging column for prefabricated vertical drain treatment of slurry[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2023, 149(1): 04022118. doi: 10.1061/(ASCE)GT.1943-5606.0002925

    [21]

    KU T, MAYNE P W. Evaluating the in situ lateral stress coefficient (K0) of soils via paired shear wave velocity modes[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(5): 775-787. doi: 10.1061/(ASCE)GT.1943-5606.0000756

    [22] 雷国辉, 许波, 张旭东. 堆载预压径竖向固结等体积应变解答[J]. 岩土工程学报, 2013, 35(1): 76-84. http://cge.nhri.cn/article/id/14920

    LEI Guohui, XU Bo, ZHANG Xudong. Equal volumetric strain solutions for radial and vertical consolidation with vertical drains under surcharge preloading[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(1): 76-84. (in Chinese) http://cge.nhri.cn/article/id/14920

    [23]

    SHI L, JIANG J W, WANG Q Q, et al. Numerical study on movements of soil particles forming clogging layer during vacuum preloading of dredged slurry[J]. Granular Matter, 2021, 23(4): 92. doi: 10.1007/s10035-021-01151-0

    [24]

    TILLER F M, KWON J H. Role of porosity in filtration: XIII. Behavior of highly compactible cakes[J]. AIChE Journal, 1998, 44(10): 2159-2167. doi: 10.1002/aic.690441005

    [25]

    GENG X, YU H S. A large-strain radial consolidation theory for soft clays improved by vertical drains[J]. Géotechnique, 2017, 67(11): 1020-1028. doi: 10.1680/jgeot.15.T.013

    [26]

    JAVIERRE E, VUIK C, VERMOLEN F J, et al. A comparison of numerical models for one-dimensional Stefan problems[J]. Journal of Computational and Applied Mathematics, 2006, 192(2): 445-459. doi: 10.1016/j.cam.2005.04.062

    [27]

    SHI L, YIN X, SUN H L, et al. A new approach for determining compressibility and permeability characteristics of dredged slurries with high water content[J]. Canadian Geotechnical Journal, 2022, 59(6): 965-977. doi: 10.1139/cgj-2020-0676

图(16)  /  表(2)
计量
  • 文章访问数:  304
  • HTML全文浏览量:  35
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-23
  • 网络出版日期:  2024-04-18
  • 刊出日期:  2025-01-31

目录

    /

    返回文章
    返回