• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

高压泡沫涨裂破岩特性试验研究

刘送永, 崔松, 顾聪聪

刘送永, 崔松, 顾聪聪. 高压泡沫涨裂破岩特性试验研究[J]. 岩土工程学报, 2025, 47(1): 125-134. DOI: 10.11779/CJGE20231216
引用本文: 刘送永, 崔松, 顾聪聪. 高压泡沫涨裂破岩特性试验研究[J]. 岩土工程学报, 2025, 47(1): 125-134. DOI: 10.11779/CJGE20231216
LIU Songyong, CUI Song, GU Congcong. Experimental study on characteristics of rock fracturing by high-pressure foam[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(1): 125-134. DOI: 10.11779/CJGE20231216
Citation: LIU Songyong, CUI Song, GU Congcong. Experimental study on characteristics of rock fracturing by high-pressure foam[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(1): 125-134. DOI: 10.11779/CJGE20231216

高压泡沫涨裂破岩特性试验研究  English Version

基金项目: 

国家自然科学基金面上项目 51975570

江苏省杰出青年基金项目 BK20211531

详细信息
    作者简介:

    刘送永(1981—),男,博士,教授,博士生导师,主要从事矿山高效采掘装备方面的研究工作。E-mail:lsycumt@163.com

    通讯作者:

    崔松, E-mail: cuisong1028@163.com

  • 中图分类号: TU452;TD42

Experimental study on characteristics of rock fracturing by high-pressure foam

  • 摘要: 针对钻爆法和机械法在岩石破碎工程中的弊端,基于泡沫的高黏性和可压缩性,提出了高压泡沫涨裂破岩技术。首先设计高压泡沫涨裂破岩装置,理论分析高压泡沫瞬间释放冲击岩石涨裂孔过程,搭建高压泡沫涨裂力测试装置并开展涨裂力影响试验,建立高压泡沫涨裂破岩试验系统,探讨不同空气体积分数时的泡沫涨裂特性,揭示高压泡沫涨裂破岩机理。研究表明:高压泡沫释放时,能够在涨裂孔内产生比泡沫初始压力更高的涨裂力,但涨裂力随泡沫空气体积分数增加而先增大后减小,高压泡沫涨裂破岩经历了裂纹初生、裂纹扩展、涨裂抛掷、涨裂结束4个阶段,破岩重量随泡沫空气体积分数的增加而先增大后减小,当空气体积分数为60%时,由高压泡沫冲击涨裂孔产生的压应力波在岩石上表面反射形成的拉应力造成岩石破坏形式为涨裂坑,空气体积分数为70%~90%时,泡沫涨裂形式为大块岩石分离,这主要是由孔底直角处应力集中效应造成。
    Abstract: In view of the shortcomings of the drilling and blasting method and the mechanical method in rock breaking engineering, based on the high viscosity and compressibility of foam, the rock-fracturing technology by high-pressure foam is proposed. Firstly, the rock fracturing devices by high-pressure foam are designed, the process of high-pressure foam instantaneous release to boreholes is theoretically analyzed, and then the testing devices for rock fracturing force by high-pressure foam are built and the relevant experiments are carried out. By using the developed experimental system of rock fracturing by high-pressure foam, the foam-fracturing characteristics with different air volume fractions are investigated, and the mechanism of high-pressure foam fracturing is revealed. The results show that when it is released, the high-pressure foam can produce a higher fracturing force than the initial foam pressure, but the fracturing force increases and then decreases with the increase of the air volume fraction of foam. The high-pressure foam fracturing goes through four stages of crack initiation, crack expansion, crack separation and end of cracking. The rock-breaking weight increases and then decreases with the increase of air volume fraction. When the air volume fraction is 60%, the rock-breaking form is blasting crater, which is mainly caused by the tensile stress generated by the compressive stress waves reflected on the rock upper surface. When the air volume fraction is 70%~90%, the rock-breaking form is stripped large stones, which is mainly caused by the effects of the stress concentration at the bottom of boreholes.
  • 图  1   高压泡沫涨裂破岩装置结构

    Figure  1.   Structure of rock-fracturing devices by high-pressure foam

    图  2   径向裂纹和周向裂纹示意图

    Figure  2.   Schematic diagram of radial and circumferential cracks

    图  3   径向裂纹和周向裂纹产生机理

    Figure  3.   Mechanism of radial and circumferential cracks

    图  4   自由面存在条件下岩石涨裂破碎过程

    Figure  4.   Rock-breaking process under free surface

    图  5   高压泡沫涨裂力测试装置

    Figure  5.   Testing devices for rock-fracturing force by high-pressure foam

    图  6   不同泡沫初始压力时孔内涨裂力变化规律

    Figure  6.   Fracturing forces under different initial foam forces

    图  7   近壁面气泡溃灭过程

    Figure  7.   Collapse process of near-wall bubble

    图  8   不同泡沫初始压力时的涨裂力最大值及增长率

    Figure  8.   Maximum values and increase rates of foam-fracturing force with different initial foam forces

    图  9   不同空气体积分数时泡沫涨裂力最大值

    Figure  9.   Maximum values and increase rates of foam-fracturing force with different air volume fractions

    图  10   高压泡沫涨裂破岩试验系统

    Figure  10.   Experimental system for rock fracturing by high-pressure foam

    图  11   密封胶筒

    Figure  11.   Sealed bucket

    图  12   岩石破碎形式为涨裂坑时涨裂过程

    Figure  12.   Fracturing process under rock-breaking form of blasting crater

    图  13   泡沫压力随时间变化曲线

    Figure  13.   Curve of foam pressure versus time

    图  14   泡沫不同释放形式时岩石涨裂效果

    Figure  14.   Rock-fracturing results with different foam release forms

    图  15   破碎形式为分离大块岩石时涨裂过程

    Figure  15.   Fracturing process under rock-breaking form of stripped large stones

    图  16   不同泡沫空气体积分数时的岩石涨裂效果

    Figure  16.   Rock-breaking results under different air volume fractions

    图  17   空气体积分数60%时岩石涨裂效果三维扫描图

    Figure  17.   Rock-breaking results by 3D scanning under air volume fraction of 60%

    图  18   泡沫空气体积分数60%时破碎特征

    Figure  18.   Characteristics of flake rock distribution under air volume fraction of 60%

    图  19   岩石破碎重量与泡沫空气体积分数关系

    Figure  19.   Rock-breaking weights under different air volume fractions

    图  20   空气体积分数90%岩石涨裂效果三维扫描图

    Figure  20.   Rock-breaking results by 3D scanning under air volume fraction of 90%

    图  21   岩石破坏模式为大块岩石分离时的裂纹扩展机理

    Figure  21.   Mechanism of crack propagation under rock-breaking form of stripped large stones

    表  1   试验岩样物理力学参数

    Table  1   Physical and mechanical parameters of artificial rocks

    密度/
    (kg·m-3)
    弹性模量/
    GPa
    UCS/
    MPa
    BTS/
    MPa
    泊松比 黏聚力/
    MPa
    内摩擦角/
    (°)
    断裂韧度/
    (N·mm3/2)
    2030 3.9 14.2 1.3 0.23 2.7 35.6 16.7
    下载: 导出CSV
  • [1] 何满潮, 郭鹏飞, 张晓虎, 等. 基于双向聚能拉张爆破理论的巷道顶板定向预裂[J]. 爆炸与冲击, 2018, 38(4): 795-803.

    HE Manchao, GUO Pengfei, ZHANG Xiaohu, et al. Directional pre-splitting of roadway roof based on the theory of bilateral cumulative tensile explosion[J]. Explosion and Shock Waves, 2018, 38(4): 795-803. (in Chinese)

    [2] 孙鹏昌, 卢文波, 雷振, 等. 单薄山体岩质高边坡爆破振动响应分析及安全控制[J]. 岩土工程学报, 2021, 43(5): 877-885. doi: 10.11779/CJGE202105011

    SUN Pengchang, LU Wenbo, LEI Zhen, et al. Blasting vibration response and control of high rock slopes of thin mountain[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(5): 877-885. (in Chinese) doi: 10.11779/CJGE202105011

    [3] 佘磊, 张社荣, 和孙文, 等. 基于密实核理论的TBM盘形滚刀磨损预测模型研究[J]. 岩土工程学报, 2022, 44(5): 970-978. doi: 10.11779/CJGE202205021

    SHE Lei, ZHANG Sherong, HE Sunwen, et al. Prediction model for TBM disc cutter wear based on dense core theory[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(5): 970-978. (in Chinese) doi: 10.11779/CJGE202205021

    [4]

    YANG L Y, WANG Q C, XU L N, et al. Fracture path of cracks emigrating from two circular holes under blasting load[J]. Theoretical and Applied Fracture Mechanics, 2020, 108: 102559. doi: 10.1016/j.tafmec.2020.102559

    [5] 周盛涛, 罗学东, 蒋楠, 等. 二氧化碳相变致裂技术研究进展与展望[J]. 工程科学学报, 2021, 43(7): 883-893.

    ZHOU Shengtao, LUO Xuedong, JIANG Nan, et al. A review on fracturing technique with carbon dioxide phase transition[J]. Chinese Journal of Engineering, 2021, 43(7): 883-893. (in Chinese)

    [6] 何志坚, 张诗童, 蒋楠, 等. CO2相变致裂应力波传播及影响规律试验研究[J]. 爆破, 2022, 39(3): 133-138.

    HE Zhijian, ZHANG Shitong, JIANG Nan, et al. Experimental investigation on propagation and influence law of stress wave induced by CO2 phase transition for rock fracturing[J]. Blasting, 2022, 39(3): 133-138. (in Chinese)

    [7]

    ZHANG Y N, DENG J R, KE B, et al. Experimental study on explosion pressure and rock breaking characteristics under liquid carbon dioxide blasting[J]. Advances in Civil Engineering, 2018, 2018: 7840125. doi: 10.1155/2018/7840125

    [8]

    ZHANG Y N, DENG J R, DENG H W, et al. Peridynamics simulation of rock fracturing under liquid carbon dioxide blasting[J]. International Journal of Damage Mechanics, 2019, 28(7): 1038-1052. doi: 10.1177/1056789518807532

    [9] 周长林, 彭欢, 桑宇, 等. 页岩气CO2泡沫压裂技术[J]. 天然气工业, 2016, 36(10): 70-76.

    ZHOU Changlin, PENG Huan, SANG Yu, et al. CO2 foam fracturing technology in shale gas development[J]. Natural Gas Industry, 2016, 36(10): 70-76. (in Chinese)

    [10]

    QAJAR A, XUE Z, WORTHEN A J, et al. Modeling fracture propagation and cleanup for dry nanoparticle-stabilized-foam fracturing fluids[J]. Journal of Petroleum Science and Engineering, 2016, 146: 210-221. doi: 10.1016/j.petrol.2016.04.008

    [11]

    WANNIARACHCHI W A M, RANJITH P G, PERERA M S A, et al. Investigation of effects of fracturing fluid on hydraulic fracturing and fracture permeability of reservoir rocks: an experimental study using water and foam fracturing[J]. Engineering Fracture Mechanics, 2018, 194: 117-135. doi: 10.1016/j.engfracmech.2018.03.009

    [12]

    GU M, MOHANTY K K. Effect of foam quality on effectiveness of hydraulic fracturing in shales[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 70: 273-285. doi: 10.1016/j.ijrmms.2014.05.013

    [13]

    PICKERING R G B. Controlled foam injection: a new and innovative non-explosive rockbreaking technology[J]. Journal of the Southern African Institute of Mining and Metallurgy, 2017, 117(3): 237-243. doi: 10.17159/2411-9717/2017/v117n3a5

    [14] 刘送永, 李志强, 谢奇志. 高压泡沫涨裂装置结构参数设计及特性分析[J]. 机械工程学报, 2021, 57(3): 197-206.

    LIU Songyong, LI Zhiqiang, XIE Qizhi. Structural parameter design and performance analysis of high pressure foam fracturing device[J]. Journal of Mechanical Engineering, 2021, 57(3): 197-206. (in Chinese)

    [15]

    XU P, YANG R S, ZUO J J, et al. Research progress of the fundamental theory and technology of rock blasting[J]. International Journal of Minerals, Metallurgy and Materials, 2022, 29(4): 705-716. doi: 10.1007/s12613-022-2464-x

    [16] 邵鲁英. 岩石压裂钻孔径轴向时空起裂扩展规律研究[D]. 徐州: 中国矿业大学, 2020.

    SHAO Luying. Study on the Law of Axial Space-Time Crack Initiation and Propagation of Rock Fracturing Drill Hole Diameter[D]. Xuzhou: China University of Mining and Technology, 2020. (in Chinese)

    [17]

    LIU Z H, MA Z K, LIU K, et al. Coupled CEL-FDEM modeling of rock failure induced by high-pressure water jet[J]. Engineering Fracture Mechanics, 2023, 277: 108958. doi: 10.1016/j.engfracmech.2022.108958

    [18] 赵旭. 高压氮气冲击致裂煤岩体裂隙发育规律研究[D]. 徐州: 中国矿业大学, 2017.

    ZHAO Xu. Study on Fracture Development Law of Coal and Rock Mass Caused by High Pressure Nitrogen Impact[D]. Xuzhou: China University of Mining and Technology, 2017. (in Chinese)

    [19] 顾大钊. 模拟岩石机械破碎的相似材料的选择及其配比[J]. 中国矿业学院学报, 1988, 17(3): 36-40.

    GU Dazhao. A study of analogous materials for simulating mechanical rock breaking and the proportion of their components[J]. Journal of China University of Mining & Technology, 1988, 17(3): 36-40. (in Chinese)

    [20]

    XIE L X, ZHANG Q B, GU J C, et al. Damage evolution mechanism in production blasting excavation under different stress fields[J]. Simulation Modelling Practice and Theory, 2019, 97: 101969. doi: 10.1016/j.simpat.2019.101969

    [21]

    QIU P, YUE Z W, JU Y, et al. Characterizing dynamic crack-tip stress distribution and evolution under blast gases and reflected stress waves by caustics method[J]. Theoretical and Applied Fracture Mechanics, 2020, 108: 102632. doi: 10.1016/j.tafmec.2020.102632

    [22] 闫浩. 超临界CO2压裂煤体分阶段致裂机理及裂缝扩展规律[D]. 徐州: 中国矿业大学, 2020.

    YAN Hao. Staged Cracking Mechanism and Crack Propagation Law of Supercritical CO2 Fracturing Coal Mass[D]. Xuzhou: China University of Mining and Technology, 2020. (in Chinese)

图(21)  /  表(1)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-07
  • 网络出版日期:  2024-04-23
  • 刊出日期:  2024-12-31

目录

    /

    返回文章
    返回