• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

黄原胶生物聚合物改良膨胀土裂隙演化规律研究

欧阳淼, 张红日, 邓人睿, 王桂尧, 肖杰, 赵亚

欧阳淼, 张红日, 邓人睿, 王桂尧, 肖杰, 赵亚. 黄原胶生物聚合物改良膨胀土裂隙演化规律研究[J]. 岩土工程学报, 2025, 47(1): 106-114. DOI: 10.11779/CJGE20230989
引用本文: 欧阳淼, 张红日, 邓人睿, 王桂尧, 肖杰, 赵亚. 黄原胶生物聚合物改良膨胀土裂隙演化规律研究[J]. 岩土工程学报, 2025, 47(1): 106-114. DOI: 10.11779/CJGE20230989
OUYANG Miao, ZHANG Hongri, DENG Renrui, WANG Guiyao, XIAO Jie, ZHAO Ya. Development of cracks in expansive soil improved by xanthan gum biopolymer[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(1): 106-114. DOI: 10.11779/CJGE20230989
Citation: OUYANG Miao, ZHANG Hongri, DENG Renrui, WANG Guiyao, XIAO Jie, ZHAO Ya. Development of cracks in expansive soil improved by xanthan gum biopolymer[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(1): 106-114. DOI: 10.11779/CJGE20230989

黄原胶生物聚合物改良膨胀土裂隙演化规律研究  English Version

基金项目: 

国家自然科学基金重点项目 42330701

广西重点研发计划项目 桂科AB23075184

国家重点研发计划项目 2019YFC1509800

国家自然科学基金项目 42477143

国家自然科学基金项目 52178416

湖南省研究生科研创新项目 QL20220195

详细信息
    作者简介:

    欧阳淼(1996—),男,博士研究生,主要从事边坡生态防护等方面的研究工作。E-mail: 21002020031@stu.csust.edu.cn

    通讯作者:

    张红日, E-mail: 253541461@qq.com

  • 中图分类号: TU43;U416

Development of cracks in expansive soil improved by xanthan gum biopolymer

  • 摘要: 采用既可抑制膨胀土裂隙扩展,又不影响坡面植被生长的黄原胶生物聚合物对膨胀土进行改良,是膨胀土边坡生态防护新思路。对黄原胶改良膨胀土开展室内干湿循环试验,利用数字图像处理技术(PCAS)对裂隙发育的整个过程进行定量分析,探究了黄原胶掺量对膨胀土裂隙形态特征指标的影响规律,并通过扫描电镜(SEM)、X射线衍射(XRD)试验分析了改良前后膨胀土的微观结构与矿物成分的变化,结合膨胀率试验结果探讨了黄原胶对膨胀土的改良机理。研究结果表明,黄原胶的掺入可以有效提高膨胀土的保水性和抗裂性,试样的平均失水速率和裂隙率均随着掺量的增加呈减小趋势;黄原胶能够降低干湿循环效应对膨胀土的影响,将裂隙宽度控制在较小范围内,增湿过程中易闭合;黄原胶主要通过两个方面抑制膨胀土开裂,一方面通过成键和胶结作用与土颗粒形成“桥联”结构,整体增强土体的抗拉强度;另一方面通过填充和成膜作用阻隔水分与土颗粒接触,减小黏土矿物的水化膜厚度。
    Abstract: The use of xanthan gum biopolymer, which can suppress the expansion of cracks of in expansive soil without affecting the growth of slope vegetation, is a new approach for ecological protection of expansive soil slopes. The indoor wet dry cycle tests are conducted on the xanthan gum-modified expansive soil, and the digital image processing technology is used to quantitatively analyze the entire process of crack development. The influences of xanthan gum content on the characteristic indices of crack morphology in expansive soil are explored, and the changes in microstructure and mineral composition of expansive soil before and after improvement are analyzed through the scanning electron microscopy and X-ray diffraction experiments, The improvement mechanism of xanthan gum on expansive soil is explored based on the results of the expansion rate tests. The research results indicate that the addition of xanthan gum can effectively improve the water retention and crack resistance of expansive soil, and the average water loss rate and crack rate of the sample decrease with the increase of dosage. The Xanthan gum can reduce the impact of wetting-drying cycle on expansive soil, control the crack width within a small range, and make it easy to close during the humidification process. It mainly inhibits the cracking of expansive soil through two aspects. On the one hand, it forms a "bridging" structure with soil particles through bonding and cementation, enhancing the overall tensile strength of the soil. On the other hand, by filling and film-forming, it blocks the contact between water and soil particles, reducing the thickness of the hydration film of clay minerals.
  • 图  1   膨胀土的颗粒级配曲线

    Figure  1.   Grain-size distribution curve of expansive soil

    图  2   黄原胶化学结构式

    Figure  2.   Chemical structure formula of xanthan gum

    图  3   黄原胶溶液及其高分子薄膜

    Figure  3.   Xanthan gum solution and its polymer film

    图  4   裂隙图像处理流程

    Figure  4.   Processing flow of crack images

    图  5   裂隙率和含水率的典型变化曲线及相应的裂隙形态

    Figure  5.   Typical variation curves of crack rate and moisture content and corresponding crack morphologies

    图  6   黄原胶改良膨胀土试样的最终裂隙图像

    Figure  6.   Final crack images of xanthan gum-modified expansive soil samples

    图  7   裂隙率随干湿循环次数变化曲线

    Figure  7.   Relationship between crack rate and number of wetting-drying cycles

    图  8   素膨胀土与黄原胶改良膨胀土的裂隙宽度分布情况

    Figure  8.   Distribution of crack width in expansive soil and xanthan gum-modified expansive soil

    图  9   裂隙最大宽度与干湿循环次数的关系

    Figure  9.   Relationship between maximum width of crack and number of wetting-drying cycles

    图  10   改良前后膨胀土微观结构对比

    Figure  10.   Comparison of microstructure of expansive soil before and after improvement

    图  11   黄原胶改良膨胀土的微观结构

    Figure  11.   Microstructures of xanthan gum-improved expansive soil

    图  12   不同黄原胶掺量的膨胀土X射线衍射图谱

    Figure  12.   X-ray diffraction patterns of expansive soil with different amounts of xanthan gum

    图  13   无荷膨胀率与黄原胶掺量的关系

    Figure  13.   Relationship between free charge expansion rate and xanthan gum content

    图  14   黄原胶抑制膨胀土裂隙发育机理

    Figure  14.   Mechanism of xanthan gum inhibiting crack development in expansive soil

    图  15   生物聚合物与MICP技术改良土体的相似性

    Figure  15.   Similarity of soil improved by biopolymer and MICP technology

    表  1   膨胀土基本物理性质指标

    Table  1   Basic physical properties of expansive soil

    土样名称 自由膨胀率/% 塑限/% 液限/% 塑性指数 最大干密度/(g·cm-3) 最优含水率/%
    膨胀土 62 27.3 54.5 27.2 1.57 24.65
    下载: 导出CSV
  • [1] 叶为民, 孔令伟, 胡瑞林, 等. 膨胀土滑坡与工程边坡新型防治技术与工程示范研究[J]. 岩土工程学报, 2022, 44(7): 1295-1309. doi: 10.11779/CJGE202207009

    YE Weimin, KONG Lingwei, HU Ruilin, et al. New prevention and treatment techniques and their applications to landslides and engineering slopes of expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(7): 1295-1309. (in Chinese) doi: 10.11779/CJGE202207009

    [2]

    QI S C, VANAPALLI S K. Hydro-mechanical coupling effect on surficial layer stability of unsaturated expansive soil slopes[J]. Computers and Geotechnics, 2015, 70: 68-82. doi: 10.1016/j.compgeo.2015.07.006

    [3] 李国维, 王佳奕, 陈伟, 等. 干湿循环对不同粒径组崩解性砂岩改良膨胀土的影响[J]. 岩土工程学报, 2022, 44(4): 643-651. doi: 10.11779/CJGE202204006

    LI Guowei, WANG Jiayi, CHEN Wei, et al. Influences of wetting-drying cycles on expansive soils improved with disintegrated sandstone with different particle size groups[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(4): 643-651. (in Chinese) doi: 10.11779/CJGE202204006

    [4] 陈正汉, 郭楠. 非饱和土与特殊土力学及工程应用研究的新进展[J]. 岩土力学, 2019, 40(1): 1-54.

    CHEN Zhenghan, GUO Nan. New developments of mechanics and application for unsaturated soils and special soils[J]. Rock and Soil Mechanics, 2019, 40(1): 1-54. (in Chinese)

    [5]

    CHADUVULA U, VISWANADHAM B V S, KODIKARA J. A study on desiccation cracking behavior of polyester fiber-reinforced expansive clay[J]. Applied Clay Science, 2017, 142: 163-172. doi: 10.1016/j.clay.2017.02.008

    [6]

    WANG H, ZHANG K X, GAN L, et al. Expansive soil-biochar-root-water-bacteria interaction: Investigation on crack development, water management and plant growth in green infrastructure[J]. International Journal of Damage Mechanics, 2021, 30(4): 595-617. doi: 10.1177/1056789520974416

    [7] 周炳生, 王保田, 张海霞, 等. 基于整体刚体平衡法的膨胀土边坡稳定分析[J]. 岩土力学, 2016, 37(增刊2): 525-532.

    ZHOU Bingsheng, WANG Baotian, ZHANG Haixia, et al. Stability analysis of expansive soil slopes based on the overall rigid body equilibrium method[J]. Rock and Soil Mechanics, 2016, 37(S2): 525-532. (in Chinese)

    [8] 李珍玉, 王丽锋, 肖宏彬, 等. 香根草根系在公路边坡土体中的分布特征[J]. 应用基础与工程科学学报, 2017, 25(1): 102-112.

    LI Zhenyu, WANG Lifeng, XIAO Hongbin, et al. Distribution characteristics of vetiver's roots in highway slope[J]. Journal of Basic Science and Engineering, 2017, 25(1): 102-112. (in Chinese)

    [9]

    CHANG I, CHO G C. Shear strength behavior and parameters of microbial gellan gum-treated soils: from sand to clay[J]. Acta Geotechnica, 2019, 14(2): 361-375. doi: 10.1007/s11440-018-0641-x

    [10]

    CHANG I, IM J, LEE S W, et al. Strength durability of gellan gum biopolymer-treated Korean sand with cyclic wetting and drying[J]. Construction and Building Materials, 2017, 143: 210-221. doi: 10.1016/j.conbuildmat.2017.02.061

    [11]

    CHANG I, PRASIDHI A K, IM J, et al. Soil strengthening using thermo-gelation biopolymers[J]. Construction and Building Materials, 2015, 77: 430-438. doi: 10.1016/j.conbuildmat.2014.12.116

    [12]

    AGUILAR R, NAKAMATSU J, RAMÍREZ E, et al. The potential use of chitosan as a biopolymer additive for enhanced mechanical properties and water resistance of earthen construction[J]. Construction and Building Materials, 2016, 114: 625-637. doi: 10.1016/j.conbuildmat.2016.03.218

    [13] 付宏渊, 查焕奕, 潘浩强, 等. 生物聚合物改良预崩解炭质泥岩水稳性及冲刷试验研究[J]. 中南大学学报, 2022, 53(7): 2633-2644.

    FU Hongyuan, ZHA Huanyi, PAN Haoqiang, et al. Water stability and erosion resistance of pre-disintegrating carbonaceous mudstone improved by biopolymers [J]. Journal of Central South University, 2022, 53(7): 2633-2644. (in Chinese)

    [14]

    HATAF N, GHADIR P, RANJBAR N. Investigation of soil stabilization using chitosan biopolymer[J]. Journal of Cleaner Production, 2018, 170: 1493-1500. doi: 10.1016/j.jclepro.2017.09.256

    [15]

    MAGHCHICHE A, HAOUAM A, IMMIRZI B. Use of polymers and biopolymers for water retaining and soil stabilization in arid and semiarid regions[J]. Journal of Taibah University for Science, 2010, 4: 9-16. doi: 10.1016/S1658-3655(12)60022-3

    [16] 贾卓龙, 晏长根, 李博, 等. 瓜尔豆胶固化纤维黄土的抗侵蚀特性及生态护坡试验研究[J]. 岩土工程学报, 2022, 44(10): 1881-1889. doi: 10.11779/CJGE202210014

    JIA Zhuolong, YAN Changgen, Li Bo, et al. Experimental study on erosion resistance and ecological slope protection of guar gum solidified fiber loess [J]. Chinese Journal of Geotechnical Engineering, 2022, 43(08): 2157-2164. (in Chinese) doi: 10.11779/CJGE202210014

    [17]

    THOMBARE N, MISHRA S, SIDDIQUI M Z, et al. Design and development of guar gum based novel, superabsorbent and moisture retaining hydrogels for agricultural applications[J]. Carbohydrate Polymers, 2018, 185: 169-178. doi: 10.1016/j.carbpol.2018.01.018

    [18]

    CHANG I, PRASIDHI A K, IM J, et al. Soil treatment using microbial biopolymers for anti-desertification purposes[J]. Geoderma, 2015, 253: 39-47.

    [19] 唐朝生, 王德银, 施斌, 等. 土体干缩裂隙网络定量分析[J]. 岩土工程学报, 2013, 35(12): 2298-2305. http://cge.nhri.cn/article/id/15610

    TANG Chaosheng, WANG Deyin, SHI Bin, et al. Quantitative analysis of soil desiccation crack network[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(12): 2298-2305. (in Chinese) http://cge.nhri.cn/article/id/15610

    [20]

    LI J H, ZHANG L M, LI X. Soil-water characteristic curve and permeability function for unsaturated cracked soil[J]. Canadian Geotechnical Journal, 2011, 48(7): 1010-1031. doi: 10.1139/t11-027

    [21]

    CHANG I, IM J, PRASIDHI A K, et al. Effects of Xanthan gum biopolymer on soil strengthening[J]. Construction and Building Materials, 2015, 74: 65-72. doi: 10.1016/j.conbuildmat.2014.10.026

    [22]

    AL QABANY A, SOGA K, SANTAMARINA C. Factors affecting efficiency of microbially induced calcite precipitation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(8): 992-1001. doi: 10.1061/(ASCE)GT.1943-5606.0000666

图(15)  /  表(1)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-09
  • 网络出版日期:  2024-04-17
  • 刊出日期:  2024-12-31

目录

    /

    返回文章
    返回