Development of cracks in expansive soil improved by xanthan gum biopolymer
-
摘要: 采用既可抑制膨胀土裂隙扩展,又不影响坡面植被生长的黄原胶生物聚合物对膨胀土进行改良,是膨胀土边坡生态防护新思路。对黄原胶改良膨胀土开展室内干湿循环试验,利用数字图像处理技术(PCAS)对裂隙发育的整个过程进行定量分析,探究了黄原胶掺量对膨胀土裂隙形态特征指标的影响规律,并通过扫描电镜(SEM)、X射线衍射(XRD)试验分析了改良前后膨胀土的微观结构与矿物成分的变化,结合膨胀率试验结果探讨了黄原胶对膨胀土的改良机理。研究结果表明,黄原胶的掺入可以有效提高膨胀土的保水性和抗裂性,试样的平均失水速率和裂隙率均随着掺量的增加呈减小趋势;黄原胶能够降低干湿循环效应对膨胀土的影响,将裂隙宽度控制在较小范围内,增湿过程中易闭合;黄原胶主要通过两个方面抑制膨胀土开裂,一方面通过成键和胶结作用与土颗粒形成“桥联”结构,整体增强土体的抗拉强度;另一方面通过填充和成膜作用阻隔水分与土颗粒接触,减小黏土矿物的水化膜厚度。Abstract: The use of xanthan gum biopolymer, which can suppress the expansion of cracks of in expansive soil without affecting the growth of slope vegetation, is a new approach for ecological protection of expansive soil slopes. The indoor wet dry cycle tests are conducted on the xanthan gum-modified expansive soil, and the digital image processing technology is used to quantitatively analyze the entire process of crack development. The influences of xanthan gum content on the characteristic indices of crack morphology in expansive soil are explored, and the changes in microstructure and mineral composition of expansive soil before and after improvement are analyzed through the scanning electron microscopy and X-ray diffraction experiments, The improvement mechanism of xanthan gum on expansive soil is explored based on the results of the expansion rate tests. The research results indicate that the addition of xanthan gum can effectively improve the water retention and crack resistance of expansive soil, and the average water loss rate and crack rate of the sample decrease with the increase of dosage. The Xanthan gum can reduce the impact of wetting-drying cycle on expansive soil, control the crack width within a small range, and make it easy to close during the humidification process. It mainly inhibits the cracking of expansive soil through two aspects. On the one hand, it forms a "bridging" structure with soil particles through bonding and cementation, enhancing the overall tensile strength of the soil. On the other hand, by filling and film-forming, it blocks the contact between water and soil particles, reducing the thickness of the hydration film of clay minerals.
-
Keywords:
- road engineering /
- xanthan gum biopolymer /
- wetting-drying cycle /
- crack /
- microstructure
-
-
表 1 膨胀土基本物理性质指标
Table 1 Basic physical properties of expansive soil
土样名称 自由膨胀率/% 塑限/% 液限/% 塑性指数 最大干密度/(g·cm-3) 最优含水率/% 膨胀土 62 27.3 54.5 27.2 1.57 24.65 -
[1] 叶为民, 孔令伟, 胡瑞林, 等. 膨胀土滑坡与工程边坡新型防治技术与工程示范研究[J]. 岩土工程学报, 2022, 44(7): 1295-1309. doi: 10.11779/CJGE202207009 YE Weimin, KONG Lingwei, HU Ruilin, et al. New prevention and treatment techniques and their applications to landslides and engineering slopes of expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(7): 1295-1309. (in Chinese) doi: 10.11779/CJGE202207009
[2] QI S C, VANAPALLI S K. Hydro-mechanical coupling effect on surficial layer stability of unsaturated expansive soil slopes[J]. Computers and Geotechnics, 2015, 70: 68-82. doi: 10.1016/j.compgeo.2015.07.006
[3] 李国维, 王佳奕, 陈伟, 等. 干湿循环对不同粒径组崩解性砂岩改良膨胀土的影响[J]. 岩土工程学报, 2022, 44(4): 643-651. doi: 10.11779/CJGE202204006 LI Guowei, WANG Jiayi, CHEN Wei, et al. Influences of wetting-drying cycles on expansive soils improved with disintegrated sandstone with different particle size groups[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(4): 643-651. (in Chinese) doi: 10.11779/CJGE202204006
[4] 陈正汉, 郭楠. 非饱和土与特殊土力学及工程应用研究的新进展[J]. 岩土力学, 2019, 40(1): 1-54. CHEN Zhenghan, GUO Nan. New developments of mechanics and application for unsaturated soils and special soils[J]. Rock and Soil Mechanics, 2019, 40(1): 1-54. (in Chinese)
[5] CHADUVULA U, VISWANADHAM B V S, KODIKARA J. A study on desiccation cracking behavior of polyester fiber-reinforced expansive clay[J]. Applied Clay Science, 2017, 142: 163-172. doi: 10.1016/j.clay.2017.02.008
[6] WANG H, ZHANG K X, GAN L, et al. Expansive soil-biochar-root-water-bacteria interaction: Investigation on crack development, water management and plant growth in green infrastructure[J]. International Journal of Damage Mechanics, 2021, 30(4): 595-617. doi: 10.1177/1056789520974416
[7] 周炳生, 王保田, 张海霞, 等. 基于整体刚体平衡法的膨胀土边坡稳定分析[J]. 岩土力学, 2016, 37(增刊2): 525-532. ZHOU Bingsheng, WANG Baotian, ZHANG Haixia, et al. Stability analysis of expansive soil slopes based on the overall rigid body equilibrium method[J]. Rock and Soil Mechanics, 2016, 37(S2): 525-532. (in Chinese)
[8] 李珍玉, 王丽锋, 肖宏彬, 等. 香根草根系在公路边坡土体中的分布特征[J]. 应用基础与工程科学学报, 2017, 25(1): 102-112. LI Zhenyu, WANG Lifeng, XIAO Hongbin, et al. Distribution characteristics of vetiver's roots in highway slope[J]. Journal of Basic Science and Engineering, 2017, 25(1): 102-112. (in Chinese)
[9] CHANG I, CHO G C. Shear strength behavior and parameters of microbial gellan gum-treated soils: from sand to clay[J]. Acta Geotechnica, 2019, 14(2): 361-375. doi: 10.1007/s11440-018-0641-x
[10] CHANG I, IM J, LEE S W, et al. Strength durability of gellan gum biopolymer-treated Korean sand with cyclic wetting and drying[J]. Construction and Building Materials, 2017, 143: 210-221. doi: 10.1016/j.conbuildmat.2017.02.061
[11] CHANG I, PRASIDHI A K, IM J, et al. Soil strengthening using thermo-gelation biopolymers[J]. Construction and Building Materials, 2015, 77: 430-438. doi: 10.1016/j.conbuildmat.2014.12.116
[12] AGUILAR R, NAKAMATSU J, RAMÍREZ E, et al. The potential use of chitosan as a biopolymer additive for enhanced mechanical properties and water resistance of earthen construction[J]. Construction and Building Materials, 2016, 114: 625-637. doi: 10.1016/j.conbuildmat.2016.03.218
[13] 付宏渊, 查焕奕, 潘浩强, 等. 生物聚合物改良预崩解炭质泥岩水稳性及冲刷试验研究[J]. 中南大学学报, 2022, 53(7): 2633-2644. FU Hongyuan, ZHA Huanyi, PAN Haoqiang, et al. Water stability and erosion resistance of pre-disintegrating carbonaceous mudstone improved by biopolymers [J]. Journal of Central South University, 2022, 53(7): 2633-2644. (in Chinese)
[14] HATAF N, GHADIR P, RANJBAR N. Investigation of soil stabilization using chitosan biopolymer[J]. Journal of Cleaner Production, 2018, 170: 1493-1500. doi: 10.1016/j.jclepro.2017.09.256
[15] MAGHCHICHE A, HAOUAM A, IMMIRZI B. Use of polymers and biopolymers for water retaining and soil stabilization in arid and semiarid regions[J]. Journal of Taibah University for Science, 2010, 4: 9-16. doi: 10.1016/S1658-3655(12)60022-3
[16] 贾卓龙, 晏长根, 李博, 等. 瓜尔豆胶固化纤维黄土的抗侵蚀特性及生态护坡试验研究[J]. 岩土工程学报, 2022, 44(10): 1881-1889. doi: 10.11779/CJGE202210014 JIA Zhuolong, YAN Changgen, Li Bo, et al. Experimental study on erosion resistance and ecological slope protection of guar gum solidified fiber loess [J]. Chinese Journal of Geotechnical Engineering, 2022, 43(08): 2157-2164. (in Chinese) doi: 10.11779/CJGE202210014
[17] THOMBARE N, MISHRA S, SIDDIQUI M Z, et al. Design and development of guar gum based novel, superabsorbent and moisture retaining hydrogels for agricultural applications[J]. Carbohydrate Polymers, 2018, 185: 169-178. doi: 10.1016/j.carbpol.2018.01.018
[18] CHANG I, PRASIDHI A K, IM J, et al. Soil treatment using microbial biopolymers for anti-desertification purposes[J]. Geoderma, 2015, 253: 39-47.
[19] 唐朝生, 王德银, 施斌, 等. 土体干缩裂隙网络定量分析[J]. 岩土工程学报, 2013, 35(12): 2298-2305. http://cge.nhri.cn/article/id/15610 TANG Chaosheng, WANG Deyin, SHI Bin, et al. Quantitative analysis of soil desiccation crack network[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(12): 2298-2305. (in Chinese) http://cge.nhri.cn/article/id/15610
[20] LI J H, ZHANG L M, LI X. Soil-water characteristic curve and permeability function for unsaturated cracked soil[J]. Canadian Geotechnical Journal, 2011, 48(7): 1010-1031. doi: 10.1139/t11-027
[21] CHANG I, IM J, PRASIDHI A K, et al. Effects of Xanthan gum biopolymer on soil strengthening[J]. Construction and Building Materials, 2015, 74: 65-72. doi: 10.1016/j.conbuildmat.2014.10.026
[22] AL QABANY A, SOGA K, SANTAMARINA C. Factors affecting efficiency of microbially induced calcite precipitation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(8): 992-1001. doi: 10.1061/(ASCE)GT.1943-5606.0000666
-
其他相关附件