Measuring method for confined water level using piezocone penetration tests
-
摘要: 基坑隧道等工程中承压水突涌、渗漏等问题时有发生,如何经济、便捷、准确地获取承压水位对工程设计及施工具有重要指导意义。通过分析江阴靖江过江隧道和海太过江通道工程中的孔压静力触探(CPTU)测试及地勘资料,提出了一种基于CPTU的承压水位测试方法,可在获取CPTU原位测试参数的同时,通过测量的孔隙水压力计算承压水位。将CPTU测试获取的承压水位与观测井水位进行对比,结果表明,测试值与观测值较为一致;CPTU方法具有操作便捷、快速、施工成本低的优点,值得在基坑隧道工程中推广使用。Abstract: The occurrence of confined water inrush and leakage is common in engineering projects such as foundation pits and tunnels. To economically, conveniently and accurately obtain the confined water level is of great significance for the guiding of engineering design and construction. By analyzing the piezocone penetration tests (CPTU) and geotechnical data from the projects of Jiangyin-Jingjiang Yangtze River Tunnel and Haitai Yangtze River Tunnel, a CPTU-based method for measuring the confined water level is proposed. This method allows for the calculation of the confined water level through measurement of pore pressure while obtaining the CPTU in-situ test parameters. The comparisons between the calculated and observed confined water levels show high consistency. The CPTU method offers advantages of convenience, speed and low construction cost, making it worth promoting and implementing in foundation pit and tunnel engineering.
-
Keywords:
- confined water /
- piezocone penetration test /
- in-situ test /
- pore pressure /
- confined water level
-
-
表 1 试验场地土体主要物理力学参数
Table 1 Parameters of soil layers in different test sites
场地 层序 名称 γ/(kN·m-3) Es/MPa e c/kPa φ/(°) K/(m·d-1) 江阴靖江长江隧道工程 ②1 粉质黏土 19.3 5.06 0.81 22.2 14.8 0.0023 ②2 淤泥质粉质黏土 18.1 3.59 1.08 10.5 16.5 0.0020 ②2-1 粉质黏土夹粉土 18.8 5.02 0.91 10.2 18.2 0.0027 ②3 粉砂 19.4 10.55 0.76 3.0 31.2 0.59 ②4 粉细砂 19.6 11.03 0.74 3.4 32.3 0.56 ③1 粉质黏土 19.9 6.60 0.72 30.7 22.4 0.0011 ③2-1 粉质黏土 19.3 5.38 0.82 18.1 21.3 0.012 ③2 粉土 19.3 8.38 0.81 6.4 29.1 0.28 ③3 粉砂 19.8 10.77 0.70 3.2 32.7 0.48 ③3-1 粉质黏土 19.2 5.92 0.83 16.0 15.2 0.053 ③4 粉细砂 20.2 11.64 0.63 3.2 33.1 1.55 ③4-2 中砂 20.5 12.07 0.57 2.8 33.2 1.67 ④2 粉质黏土 19.5 5.67 0.79 24.0 15.1 0.0043 ④3 粉质黏土 20.0 7.15 0.71 33.8 15.1 0.0011 ④4 粉细砂 20.5 12.85 0.57 3.4 33.2 1.85 海太过江通道工程 ②1 粉质黏土 19.3 8.5 0.79 19.3 19.2 0.0065 ③5 粉土夹粉砂 19.6 10.3 0.72 29.8 33.4 0.0075 ④1 淤泥质粉质黏土夹粉土 18.1 4.2 1.03 12.0 17.2 0.016 ④2 粉质黏土夹粉土 18.0 5.7 0.96 17.2 20.5 0.013 ④2-1 粉砂 18.6 7.4 0.83 6.1 32.7 0.36 ④3 粉土夹淤泥质粉质黏土 17.9 5.9 0.99 13.2 25.5 0.014 ④3-1 粉砂 18.9 9.9 0.79 6.6 31.8 0.22 ⑤2 粉砂 19.5 10.7 0.69 6.1 34.8 0.51 注:γ为天然重度;Es为压缩模量;e为孔隙比;c为黏聚力;φ为内摩擦角;K为渗透系数。 -
[1] 刘松玉, 蔡国军, 邹海峰. 基于CPTU的中国实用土分类方法研究[J]. 岩土工程学报, 2013, 35(10): 1765-1776. http://cge.nhri.cn/article/id/15294 LIU Songyu, CAI Guojun, ZOU Haifeng. Practical soil classification methods in China based on piezocone penetration tests[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(10): 1765-1776. (in Chinese) http://cge.nhri.cn/article/id/15294
[2] 童立元, 涂启柱, 杜广印, 等. 应用孔压静力触探(CPTU)确定软土压缩模量的试验研究[J]. 岩土工程学报, 2013, 35(S2): 569-572. TONG Liyuan, TU Qizhu, DU Guangyin, et al. Determination of confined compression modulus of soft clay using piezocone penetration tests[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S2): 569-572. (in Chinese)
[3] HUTABARAT D, BRAY J D. Estimating the severity of liquefaction ejecta using the cone penetration test[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2022, 148(3): 04021195. doi: 10.1061/(ASCE)GT.1943-5606.0002744
[4] 蔡国军, 刘松玉, PUPPALA A J, 等. 基于CPTU测试的桩基承载力可靠性分析[J]. 岩土工程学报, 2011, 33(3): 404-412. http://cge.nhri.cn/article/id/13955 CAI Guojun, LIU Songyu, PUPPALA A J, et al. Reliability assessment of bearing capacity of pile foundation based on CPTU data[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(3): 404-412. (in Chinese) http://cge.nhri.cn/article/id/13955
[5] 李洪江, 刘松玉, 童立元. 基于CPTU测试p-y曲线法及其在桩基水平承载中的应用[J]. 岩石力学与工程学报, 2017, 36(2): 513-520. LI Hongjiang, LIU Songyu, TONG Li-yuan. A p-y curve method for defermining the horizontal bearing capacity of single pile based on CPTU test and its application[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(2): 513-520. (in Chinese)
[6] 李赞, 刘松玉, 吴恺, 等. 基于多功能CPTU测试的基坑开挖扰动深度确定方法[J]. 岩土工程学报, 2021, 43(1): 181-187. doi: 10.11779/CJGE202101021 LI Zan, LIU Songyu, WU Kai, et al. Determination of disturbance depth due to excavation using multifunctional CPTU tests[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(1): 181-187. (in Chinese) doi: 10.11779/CJGE202101021
[7] 陈伟宏. 利用静力触探护管进行承压水观测技术研究[J]. 上海地质, 2010, 31(增刊1): 80-82. CHEN Hongwei. Study on measurement of confined water head with protecting pipe of cone penetration test[J]. Shanghai Geology, 2010, 31(S1): 80-82. (in Chinese)
[8] ELSWORTH D, LEE D S, HRYCIW R, et al. Pore pressure response following undrained cCPT Sounding in a dilating soil[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(11): 1485-1495.