Time series prediction of surface displacement induced by excavation of foundation pits based on deep learning
-
摘要: 为更精准预测基坑工程中数据的时间特性,结合卷积神经网络CNN模型与两种单一时间序列神经网络模型长短期记忆网络LSTM模型、门控循环单元GRU模型,建立混合时间序列神经网络CNN-LSTM模型、CNN-GRU模型。基于杭州某邻近既有车站基坑开挖工程,采用滚动预测方法建立基坑开挖引起邻近地铁车站地表沉降数据集。通过平均绝对误差MAE、平均相对误差MAPE和均方根误差RMSE3种评价指标对预测结果进行评价。结果表明:CNN-GRU模型预测效果最优,CNN-LSTM模型次之,其次是GRU模型,最后是LSTM模型。CNN-LSTM混合网络模型相较于LSTM模型对3种评价指标分别降低了24.4%,53.8%,4.1%,CNN-GRU混合网络模型相较于GRU模型分别降低了13.9%,49.1%,1%。Abstract: To predict the time characteristics of data more accurately in foundation pit engineering, two single time series neural network models are combined, the convolutional neural network (CNN) and long short-term memory network (LSTM), as well as the gated recurrent unit (GRU), to establish a hybrid time series neural network model CNN-LSTM and CNN-GRU. An excavation project of a foundation pit adjacent to an existing station in Hangzhou is selected, and a rolling prediction method is used to create a dataset of surface settlement caused by excavation of the foundation pit in the adjacent subway stations. The predicted results are evaluated by three evaluation indexes: mean absolute error (MAE), mean relative error (MAPE) and root mean square error (RMSE). The results demonstrate that the CNN-GRU has the best prediction effects, followed by the CNN-LSTM, GRU and LSTM. Compared with the LSTM model, the CNN-LSTM hybrid network model reduces the three evaluation indexes by 24.4%, 53.8% and 4.1%, respectively, and the CNN-GRU hybrid network model decreases by 13.9%, 49.1% and 1%, respectively, compared with the GRU model.
-
-
表 1 预测模型评价指标
Table 1 Evaluation indexes of prediction models
评判指标 LSTM CNN-LSTM 优化效果/% GRU CNN-GRU 优化效果/% MAE 0.1019 0.0819 24.4 0.0902 0.0782 13.9 MAPE 1.2779 0.5909 53.8 1.0970 0.5581 49.1 RMSE 0.1251 0.1199 4.1 0.1185 0.1174 1.0 -
[1] LIU Bo, WU Wenwen, LIU Haipei, et al. Effect and control of foundation pit excavation on existing tunnels: a state-of-the-art review[J]. Tunnelling and Underground Space Technology, 2024, 147: 105704. doi: 10.1016/j.tust.2024.105704
[2] 王卫东. 软土深基坑变形及环境影响分析方法与控制技术[J]. 岩土工程学报, 2024, 46(1): 1-25. doi: 10.11779/CJGE20231146 WANG Weidong. Analytical methods and controlling techniques for deformation and environmental influence of deep excavations in soft soils[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(1): 1-25. (in Chinese) doi: 10.11779/CJGE20231146
[3] HU Y, LEI H Y, ZHENG G, et al. Assessing the deformation response of double-track overlapped tunnels using numerical simulation and field monitoring[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2022, 14(2): 436-447. doi: 10.1016/j.jrmge.2021.07.003
[4] XU Q W, XIE J L, LU L H, et al. Numerical and theoretical analysis on soil arching effect of prefabricated piles as deep foundation pit supports[J]. Underground Space, 2024, 16: 314-330. doi: 10.1016/j.undsp.2023.09.011
[5] 胡之锋, 陈健, 邱岳峰, 等. 挡墙水平变位诱发地表沉降的显式解析解[J]. 岩土力学, 2018, 39(11): 4165-4175. HU Zhifeng, CHEN Jian, QIU Yuefeng, et al. Analytical formula for ground settlement induced by horizontal movement of retaining wall[J]. Rock and Soil Mechanics, 2018, 39(11): 4165-4175. (in Chinese)
[6] 薛艳杰. 基于机器学习算法的土岩复合地层深基坑变形时序预测[J]. 现代隧道技术, 2022, 59(增刊2): 77-85. XUE Yanjie. Deformation time series prediction of deep foundation pit in soil-rock composite stratum based on machine learning algorithm[J]. Modern Tunnelling Technology, 2022, 59(S2): 77-85. (in Chinese)
[7] 赵华菁, 张名扬, 刘维, 等. 基于神经网络算法的深基坑地连墙变形动态预测[J]. 地下空间与工程学报, 2021, 17(增刊1): 321-327. ZHAO Huajing, ZHANG Mingyang, LIU Wei, et al. Dynamic prediction of deformation of diaphragm wall in deep foundation pit based on neural network algorithm[J]. Chinese Journal of Underground Space and Engineering, 2021, 17(S1): 321-327. (in Chinese)
[8] 张生杰, 谭勇. 基于LSTM算法的基坑变形预测[J]. 隧道建设(中英文), 2022, 42(1): 113-120. ZHANG Shengjie, TAN Yong. Deformation prediction of foundation pit based on long short-term memory algorithm[J]. Tunnel Construction, 2022, 42(1): 113-120. (in Chinese)
[9] 徐长节, 李欣雨. 基于人工神经网络的深基坑支护结构侧移预测[J/OL]. 上海交通大学学报, 1-20. [2024-09-11]. https://doi.org/10.16183/j.cnki.jsjtu.2023.109. XU Changjie, LI Xinyu. Lateral Deformation Prediction of Deep Foundation Retaining Structures Based on Artificial Neural Network[J/OL]. Journal of Shanghai Jiao Tong University, 1-20[2024-09-11]. https://doi.org/10.16183/j.cnki.jsjtu.2023.109. (in Chinese)
[10] 方庆, 陈胜, 刘雪珠, 等. 基于变分模态分解的CNN-LSTM模型在基坑变形预测中的应用[J/OL]. 力学与实践, 1-8[2024-09-11]. http://kns.cnki.net/kcms/detail/11.2064.o3.20240314.2043.002.html. FANG Qin, CHEN Sheng, LIU Xuezhu, et al. Application of the variational mode decomposition-based CNN-LSTM model in predicting excavation deformation[J]. Mechanics in Engineering, 1-8[2024-09-11]. http://kns.cnki.net/kcms/detail/11.2064.o3.20240314.2043.002.html. (in Chinese)
[11] 满轲, 武立文, 刘晓丽, 等. 基于CNN-LSTM模型的TBM隧道掘进参数及岩爆等级预测[J/OL]. 煤炭科学技术, 1-19[2024-09-11]. http://kns.cnki.net/kcms/detail/11.2402.TD.20231026.1344.003.html. MAN Ke, WU Liwen, LIU Xiaoli, et al. The prediction of TBM tunnel boring parameters and rockburst grade based on CNN-LSTM model[J/OL]. Coal Science and Technology, 1-19[2024-09-11]. http://kns.cnki.net/kcms/detail/11.2402.TD.20231026.1344.003.html. (in Chinese)
[12] 王锋. 基于SSA-LSTM模型的软岩隧道变形特征智能预测及应用研究[J]. 现代隧道技术, 2024, 61(1): 56-66. WANG Feng. Study on intelligent prediction of the deformation characteristics of soft rock tunnel based on SSA-LSTM model and its application[J]. Modern Tunnelling Technology, 2024, 61(1): 56-66. (in Chinese)
[13] 洪宇超, 钱建固, 叶源新, 等. 基于时空关联特征的CNN-LSTM模型在基坑工程变形预测中的应用[J]. 岩土工程学报, 2021, 43(增刊2): 108-111. doi: 10.11779/CJGE2021S2026 HONG Yuchao, QIAN Jiangu, YE Yuanxin, et al. Application of CNN-LSTM model based on spatio-temporal correlation characteristics in deformation prediction of foundation pit engineering[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 108-111. (in Chinese) doi: 10.11779/CJGE2021S2026
-
期刊类型引用(12)
1. 李贝贝. 强动压巷道底板变形破坏特征及控制技术研究. 山东煤炭科技. 2025(01): 1-4+11 . 百度学术
2. 毕智强,于振亚,张涛. 深井动压软岩巷道底鼓变形破坏机理与防治技术. 陕西煤炭. 2025(04): 84-88+113 . 百度学术
3. 伊丙鼎. 煤层水仓围岩变形破坏特征及控制技术研究. 煤炭工程. 2024(03): 117-123 . 百度学术
4. 肖同强,王泽源,刘发义,代晓亮,赵帅,余子豪. 深部强动压巷道底鼓控制机理及技术研究. 采矿与安全工程学报. 2024(04): 666-676 . 百度学术
5. 丁维波,王丹影,闫医慧. 回采巷道底鼓机理及防治技术研究. 煤炭技术. 2024(08): 23-27 . 百度学术
6. 朱国保,董垠枫. 非均质围岩隧道断面的施工关键技术研究. 四川建筑. 2024(05): 200-201 . 百度学术
7. 耿铭,孙静. 厚硬顶板悬顶致灾机理及切顶控制技术研究. 工矿自动化. 2024(11): 132-141 . 百度学术
8. 柴敬,韩志成,雷武林,张丁丁,马晨阳,孙凯,翁明月,张有志,丁国利,郑忠友,张寅,韩刚. 回采巷道底鼓演化过程的分布式光纤实测研究. 煤炭科学技术. 2023(01): 146-156 . 百度学术
9. 吕情绪,曹军,高亮. 重复采动回采巷道变形机理及稳定控制. 中国矿业. 2023(05): 96-103 . 百度学术
10. 丁自伟,王少轩,王庆阳,王耀声,王春斌,李军岐,邸广强,李亮. 软岩巷道底鼓机理及其稳定性控制研究. 煤炭工程. 2023(07): 102-109 . 百度学术
11. 吕志强,黄亚军,景明,徐啸川. 深部软岩巷道变形破坏机理及支护技术. 能源与环保. 2023(11): 280-286 . 百度学术
12. 杨晓炜. 深部软岩大断面巷道大变形控制技术研究. 能源与环保. 2023(11): 312-318 . 百度学术
其他类型引用(16)