• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于深度学习的基坑开挖引起地表位移时序预测

唐浩然, 胡垚, 雷华阳, 路军富, 刘婷, 王凯

唐浩然, 胡垚, 雷华阳, 路军富, 刘婷, 王凯. 基于深度学习的基坑开挖引起地表位移时序预测[J]. 岩土工程学报, 2024, 46(S2): 236-241. DOI: 10.11779/CJGE2024S20014
引用本文: 唐浩然, 胡垚, 雷华阳, 路军富, 刘婷, 王凯. 基于深度学习的基坑开挖引起地表位移时序预测[J]. 岩土工程学报, 2024, 46(S2): 236-241. DOI: 10.11779/CJGE2024S20014
TANG Haoran, HU Yao, LEI Huayang, LU Junfu, LIU Ting, WANG Kai. Time series prediction of surface displacement induced by excavation of foundation pits based on deep learning[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S2): 236-241. DOI: 10.11779/CJGE2024S20014
Citation: TANG Haoran, HU Yao, LEI Huayang, LU Junfu, LIU Ting, WANG Kai. Time series prediction of surface displacement induced by excavation of foundation pits based on deep learning[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S2): 236-241. DOI: 10.11779/CJGE2024S20014

基于深度学习的基坑开挖引起地表位移时序预测  English Version

基金项目: 

国家自然科学基金项目 42307260

四川省自然科学基金项目 2023NSFSC0882

地质灾害防治与地质环境保护国家重点实验室开发基金 SKLGP2023K024

详细信息
    作者简介:

    唐浩然(1999—),男,硕士研究生,主要从事岩土与地下工程方面的研究。E-mail:tanghaoran@stu.cdut.edu.cn

    通讯作者:

    胡垚, E-mail: hyjiaoliu@163.com

  • 中图分类号: TU43

Time series prediction of surface displacement induced by excavation of foundation pits based on deep learning

  • 摘要: 为更精准预测基坑工程中数据的时间特性,结合卷积神经网络CNN模型与两种单一时间序列神经网络模型长短期记忆网络LSTM模型、门控循环单元GRU模型,建立混合时间序列神经网络CNN-LSTM模型、CNN-GRU模型。基于杭州某邻近既有车站基坑开挖工程,采用滚动预测方法建立基坑开挖引起邻近地铁车站地表沉降数据集。通过平均绝对误差MAE、平均相对误差MAPE和均方根误差RMSE3种评价指标对预测结果进行评价。结果表明:CNN-GRU模型预测效果最优,CNN-LSTM模型次之,其次是GRU模型,最后是LSTM模型。CNN-LSTM混合网络模型相较于LSTM模型对3种评价指标分别降低了24.4%,53.8%,4.1%,CNN-GRU混合网络模型相较于GRU模型分别降低了13.9%,49.1%,1%。
    Abstract: To predict the time characteristics of data more accurately in foundation pit engineering, two single time series neural network models are combined, the convolutional neural network (CNN) and long short-term memory network (LSTM), as well as the gated recurrent unit (GRU), to establish a hybrid time series neural network model CNN-LSTM and CNN-GRU. An excavation project of a foundation pit adjacent to an existing station in Hangzhou is selected, and a rolling prediction method is used to create a dataset of surface settlement caused by excavation of the foundation pit in the adjacent subway stations. The predicted results are evaluated by three evaluation indexes: mean absolute error (MAE), mean relative error (MAPE) and root mean square error (RMSE). The results demonstrate that the CNN-GRU has the best prediction effects, followed by the CNN-LSTM, GRU and LSTM. Compared with the LSTM model, the CNN-LSTM hybrid network model reduces the three evaluation indexes by 24.4%, 53.8% and 4.1%, respectively, and the CNN-GRU hybrid network model decreases by 13.9%, 49.1% and 1%, respectively, compared with the GRU model.
  • 图  1   CNN神经网络

    Figure  1.   CNN neural network

    图  2   LSTM单元结构图

    Figure  2.   Structure of LSTM cell

    图  3   GRU模型结构

    Figure  3.   Structure of GRU model

    图  4   CNN-LSTM和CNN-GRU结构

    Figure  4.   Structure of CNN-LSTM and CNN-GRU

    图  5   杭州某邻近既有隧道基坑开挖工程概况

    Figure  5.   Overview of project adjacent to excavation of existing tunnel in Hangzhou

    图  6   滚动预测法

    Figure  6.   Rolling forecasting method

    图  7   地表位移预测值对比

    Figure  7.   Comparison of predicted surface displacements

    图  8   地表位移预测精度对比

    Figure  8.   Comparison of prediction accuracies of surface displacement

    表  1   预测模型评价指标

    Table  1   Evaluation indexes of prediction models

    评判指标 LSTM CNN-LSTM 优化效果/% GRU CNN-GRU 优化效果/%
    MAE 0.1019 0.0819 24.4 0.0902 0.0782 13.9
    MAPE 1.2779 0.5909 53.8 1.0970 0.5581 49.1
    RMSE 0.1251 0.1199 4.1 0.1185 0.1174 1.0
    下载: 导出CSV
  • [1]

    LIU Bo, WU Wenwen, LIU Haipei, et al. Effect and control of foundation pit excavation on existing tunnels: a state-of-the-art review[J]. Tunnelling and Underground Space Technology, 2024, 147: 105704. doi: 10.1016/j.tust.2024.105704

    [2] 王卫东. 软土深基坑变形及环境影响分析方法与控制技术[J]. 岩土工程学报, 2024, 46(1): 1-25. doi: 10.11779/CJGE20231146

    WANG Weidong. Analytical methods and controlling techniques for deformation and environmental influence of deep excavations in soft soils[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(1): 1-25. (in Chinese) doi: 10.11779/CJGE20231146

    [3]

    HU Y, LEI H Y, ZHENG G, et al. Assessing the deformation response of double-track overlapped tunnels using numerical simulation and field monitoring[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2022, 14(2): 436-447. doi: 10.1016/j.jrmge.2021.07.003

    [4]

    XU Q W, XIE J L, LU L H, et al. Numerical and theoretical analysis on soil arching effect of prefabricated piles as deep foundation pit supports[J]. Underground Space, 2024, 16: 314-330. doi: 10.1016/j.undsp.2023.09.011

    [5] 胡之锋, 陈健, 邱岳峰, 等. 挡墙水平变位诱发地表沉降的显式解析解[J]. 岩土力学, 2018, 39(11): 4165-4175.

    HU Zhifeng, CHEN Jian, QIU Yuefeng, et al. Analytical formula for ground settlement induced by horizontal movement of retaining wall[J]. Rock and Soil Mechanics, 2018, 39(11): 4165-4175. (in Chinese)

    [6] 薛艳杰. 基于机器学习算法的土岩复合地层深基坑变形时序预测[J]. 现代隧道技术, 2022, 59(增刊2): 77-85.

    XUE Yanjie. Deformation time series prediction of deep foundation pit in soil-rock composite stratum based on machine learning algorithm[J]. Modern Tunnelling Technology, 2022, 59(S2): 77-85. (in Chinese)

    [7] 赵华菁, 张名扬, 刘维, 等. 基于神经网络算法的深基坑地连墙变形动态预测[J]. 地下空间与工程学报, 2021, 17(增刊1): 321-327.

    ZHAO Huajing, ZHANG Mingyang, LIU Wei, et al. Dynamic prediction of deformation of diaphragm wall in deep foundation pit based on neural network algorithm[J]. Chinese Journal of Underground Space and Engineering, 2021, 17(S1): 321-327. (in Chinese)

    [8] 张生杰, 谭勇. 基于LSTM算法的基坑变形预测[J]. 隧道建设(中英文), 2022, 42(1): 113-120.

    ZHANG Shengjie, TAN Yong. Deformation prediction of foundation pit based on long short-term memory algorithm[J]. Tunnel Construction, 2022, 42(1): 113-120. (in Chinese)

    [9] 徐长节, 李欣雨. 基于人工神经网络的深基坑支护结构侧移预测[J/OL]. 上海交通大学学报, 1-20. [2024-09-11]. https://doi.org/10.16183/j.cnki.jsjtu.2023.109.

    XU Changjie, LI Xinyu. Lateral Deformation Prediction of Deep Foundation Retaining Structures Based on Artificial Neural Network[J/OL]. Journal of Shanghai Jiao Tong University, 1-20[2024-09-11]. https://doi.org/10.16183/j.cnki.jsjtu.2023.109. (in Chinese)

    [10] 方庆, 陈胜, 刘雪珠, 等. 基于变分模态分解的CNN-LSTM模型在基坑变形预测中的应用[J/OL]. 力学与实践, 1-8[2024-09-11]. http://kns.cnki.net/kcms/detail/11.2064.o3.20240314.2043.002.html.

    FANG Qin, CHEN Sheng, LIU Xuezhu, et al. Application of the variational mode decomposition-based CNN-LSTM model in predicting excavation deformation[J]. Mechanics in Engineering, 1-8[2024-09-11]. http://kns.cnki.net/kcms/detail/11.2064.o3.20240314.2043.002.html. (in Chinese)

    [11] 满轲, 武立文, 刘晓丽, 等. 基于CNN-LSTM模型的TBM隧道掘进参数及岩爆等级预测[J/OL]. 煤炭科学技术, 1-19[2024-09-11]. http://kns.cnki.net/kcms/detail/11.2402.TD.20231026.1344.003.html.

    MAN Ke, WU Liwen, LIU Xiaoli, et al. The prediction of TBM tunnel boring parameters and rockburst grade based on CNN-LSTM model[J/OL]. Coal Science and Technology, 1-19[2024-09-11]. http://kns.cnki.net/kcms/detail/11.2402.TD.20231026.1344.003.html. (in Chinese)

    [12] 王锋. 基于SSA-LSTM模型的软岩隧道变形特征智能预测及应用研究[J]. 现代隧道技术, 2024, 61(1): 56-66.

    WANG Feng. Study on intelligent prediction of the deformation characteristics of soft rock tunnel based on SSA-LSTM model and its application[J]. Modern Tunnelling Technology, 2024, 61(1): 56-66. (in Chinese)

    [13] 洪宇超, 钱建固, 叶源新, 等. 基于时空关联特征的CNN-LSTM模型在基坑工程变形预测中的应用[J]. 岩土工程学报, 2021, 43(增刊2): 108-111. doi: 10.11779/CJGE2021S2026

    HONG Yuchao, QIAN Jiangu, YE Yuanxin, et al. Application of CNN-LSTM model based on spatio-temporal correlation characteristics in deformation prediction of foundation pit engineering[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 108-111. (in Chinese) doi: 10.11779/CJGE2021S2026

  • 期刊类型引用(12)

    1. 李贝贝. 强动压巷道底板变形破坏特征及控制技术研究. 山东煤炭科技. 2025(01): 1-4+11 . 百度学术
    2. 毕智强,于振亚,张涛. 深井动压软岩巷道底鼓变形破坏机理与防治技术. 陕西煤炭. 2025(04): 84-88+113 . 百度学术
    3. 伊丙鼎. 煤层水仓围岩变形破坏特征及控制技术研究. 煤炭工程. 2024(03): 117-123 . 百度学术
    4. 肖同强,王泽源,刘发义,代晓亮,赵帅,余子豪. 深部强动压巷道底鼓控制机理及技术研究. 采矿与安全工程学报. 2024(04): 666-676 . 百度学术
    5. 丁维波,王丹影,闫医慧. 回采巷道底鼓机理及防治技术研究. 煤炭技术. 2024(08): 23-27 . 百度学术
    6. 朱国保,董垠枫. 非均质围岩隧道断面的施工关键技术研究. 四川建筑. 2024(05): 200-201 . 百度学术
    7. 耿铭,孙静. 厚硬顶板悬顶致灾机理及切顶控制技术研究. 工矿自动化. 2024(11): 132-141 . 百度学术
    8. 柴敬,韩志成,雷武林,张丁丁,马晨阳,孙凯,翁明月,张有志,丁国利,郑忠友,张寅,韩刚. 回采巷道底鼓演化过程的分布式光纤实测研究. 煤炭科学技术. 2023(01): 146-156 . 百度学术
    9. 吕情绪,曹军,高亮. 重复采动回采巷道变形机理及稳定控制. 中国矿业. 2023(05): 96-103 . 百度学术
    10. 丁自伟,王少轩,王庆阳,王耀声,王春斌,李军岐,邸广强,李亮. 软岩巷道底鼓机理及其稳定性控制研究. 煤炭工程. 2023(07): 102-109 . 百度学术
    11. 吕志强,黄亚军,景明,徐啸川. 深部软岩巷道变形破坏机理及支护技术. 能源与环保. 2023(11): 280-286 . 百度学术
    12. 杨晓炜. 深部软岩大断面巷道大变形控制技术研究. 能源与环保. 2023(11): 312-318 . 百度学术

    其他类型引用(16)

图(8)  /  表(1)
计量
  • 文章访问数:  165
  • HTML全文浏览量:  22
  • PDF下载量:  46
  • 被引次数: 28
出版历程
  • 收稿日期:  2024-06-21
  • 刊出日期:  2024-09-30

目录

    /

    返回文章
    返回