• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

砂颗粒矿物成分对MICP过程的影响及机理

刘浩, 唐朝生, 吕超, 章君政, 泮晓华, 王宝军

刘浩, 唐朝生, 吕超, 章君政, 泮晓华, 王宝军. 砂颗粒矿物成分对MICP过程的影响及机理[J]. 岩土工程学报, 2024, 46(9): 1956-1964. DOI: 10.11779/CJGE20230431
引用本文: 刘浩, 唐朝生, 吕超, 章君政, 泮晓华, 王宝军. 砂颗粒矿物成分对MICP过程的影响及机理[J]. 岩土工程学报, 2024, 46(9): 1956-1964. DOI: 10.11779/CJGE20230431
LIU Hao, TANG Chaosheng, LÜ Chao, ZHANG Junzheng, PAN Xiaohua, WANG Baojun. Effects and mechanisms of mineral composition of sand on MICP process[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(9): 1956-1964. DOI: 10.11779/CJGE20230431
Citation: LIU Hao, TANG Chaosheng, LÜ Chao, ZHANG Junzheng, PAN Xiaohua, WANG Baojun. Effects and mechanisms of mineral composition of sand on MICP process[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(9): 1956-1964. DOI: 10.11779/CJGE20230431

砂颗粒矿物成分对MICP过程的影响及机理  English Version

基金项目: 

国家杰出青年科学基金项目 41925012

国家自然科学基金重点项目 42230710

江苏省自然科学基金项目 BK20211087

详细信息
    作者简介:

    刘浩(1999—),男,博士研究生,主要从事微生物岩土工程方面的研究工作。E-mail: liuhao@smail.nju.edu.cn

    通讯作者:

    唐朝生, E-mail: tangchaosheng@nju.edu.cn

  • 中图分类号: TU441

Effects and mechanisms of mineral composition of sand on MICP process

  • 摘要: 微生物诱导碳酸钙沉淀(MICP)是一种绿色环保的新型土体加固技术,具有广泛的应用前景。为了研究砂颗粒矿物成分对MICP过程的影响,分别选用石英砂和钙质砂为代表性研究对象,利用环氧树脂胶结固化后打磨制成样片,再在配置好的菌液和胶结液中对样片表面进行MICP处理,结合X射线衍射(XRD)、扫描电镜(SEM)以及超声震荡试验定量分析了碳酸钙产量、矿物晶型、晶貌及界面胶结特性。结果表明:①钙质砂颗粒比石英砂颗粒更利于微生物诱导生成碳酸钙,平均单位面积碳酸钙生成量前者约为后者的5倍;②两种砂颗粒表面生成的碳酸钙主要为球霰石和方解石,钙质砂界面能更低,诱导生成更多的方解石;③石英砂表面生成的碳酸钙主要为较大的球形颗粒,而钙质砂表面的碳酸钙形貌主要为板片状;④微生物在钙质砂颗粒上诱导生成的碳酸钙呈现更高的界面胶结强度,经超声波震荡后,石英砂颗粒上碳酸钙的质量损失率约为钙质砂的10倍。在此基础上,运用微生物学、晶体化学、结晶矿物学等其他相关学科的理论,系统分析了石英砂和钙质砂对MICP过程及效果的影响机理,取得了新的认识,对优化MICP技术在岩土工程中的应用有重要意义。
    Abstract: The microbially induced calcium carbonate precipitation (MICP) is a new environmentally friendly stabilization technique for soils with broad application prospects. To investigate the effect of mineral composition of sand particles on the MICP process, the quartz sand and calcareous sand are chosen as the representative materials. The sand particles are bound with epoxy resin to create samples, which are subsequently subjected to the MICP treatment by immersing them in prepared bacterial and cementation solutions. The calcium carbonate production, mineral phases, crystal morphology and interfacial cementation characteristics are quantitatively analyzed using the X-ray diffraction (XRD), scanning electron microscopy (SEM) and ultrasonic tests. The results indicate: (1) The calcareous sand particles are more conducive to the MICP, with an average calcium carbonate generation per unit area that is about 5 times that of the quartz sand particles. (2) The calcium carbonate precipitated on the surfaces of both sand particles mainly consists of vaterite and calcite, with the calcareous sand inducing a higher proportion of calcite precipitation because of its lower interfacial energy. (3) The calcium carbonate precipitated on the surface of the quartz sand is predominantly composed of larger spherical particles, while the morphology of calcium carbonate on the surface of the calcareous sand is predominantly plate-like. (4) The microbially induced calcium carbonate on the calcareous sand particles exhibits higher interfacial cementation strength. After subjecting the samples to ultrasonic agitation, the mass loss rate of the calcium carbonate on the quartz sand is about 10 times that on the calcareous sand. Based on these findings, the theories from the disciplines such as microbiology, crystal chemistry and mineralogy are employed to systematically analyze the mechanisms through which quartz sand and calcareous sand affect the MICP process and its outcomes. This study provides new insights and is of significant importance for optimizing the application of the MICP in geotechnical engineering.
  • 图  1   试验样片照片

    Figure  1.   Photos of test specimens

    图  2   反应装置示意图

    Figure  2.   Diagram of reaction devices

    图  3   图像处理

    Figure  3.   Picture processing

    图  4   单位面积砂颗粒上碳酸钙生成量

    Figure  4.   Masses of calcium carbonate per unit area of sand particles

    图  5   细菌与砂颗粒相互作用的DLVO曲线

    Figure  5.   DLVO energy profiles of bacteria-sand interactions

    图  6   砂颗粒表面的MICP过程示意图

    Figure  6.   Schematic diagram of MICP process on surface of sand particles

    图  7   砂颗粒表面碳酸钙的XRD分析图谱

    Figure  7.   XRD analysis of calcium carbonate on surface of sand particles

    图  8   砂颗粒表面碳酸钙晶型选择

    Figure  8.   Selection of polymorphs of calcium carbonate precipitated on surface of sands

    图  9   扫描电镜下碳酸钙的形貌

    Figure  9.   Morphologies of calcium carbonate under SEM

    图  10   超声震荡后碳酸钙质量损失率

    Figure  10.   Mass loss rates of calcium carbonate after ultrasonic tests

  • [1] 程晓辉, 麻强, 杨钻, 等. 微生物灌浆加固液化砂土地基的动力反应研究[J]. 岩土工程学报, 2013, 35(8): 1486-1495. http://cge.nhri.cn/article/id/15257

    CHENG Xiaohui, MA Qiang, YANG Zuan, et al. Dynamic response of liquefiable sand foundation improved by bio-grouting[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1486-1495. (in Chinese) http://cge.nhri.cn/article/id/15257

    [2] 赵茜. 微生物诱导碳酸钙沉淀(MICP)固化土壤实验研究[D]. 北京: 中国地质大学(北京), 2014.

    ZHAO Qian. Experimental Study on Soil Improvement Using Microbial induced Calcite Precipitation (MICP)[D]. Beijing: China University of Geosciences(Beijing), 2014. (in Chinese)

    [3] 董博文, 刘士雨, 俞缙, 等. 基于微生物诱导碳酸钙沉淀的天然海水加固钙质砂效果评价[J]. 岩土力学, 2021, 42(4): 1104-1114. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202104023.htm

    DONG Bowen, LIU Shiyu, YU Jin, et al. Evaluation of the effect of natural seawater strengthening calcareous sand based on MICP[J]. Rock and Soil Mechanics, 2021, 42(4): 1104-1114. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202104023.htm

    [4]

    VAN PAASSEN L. Biogrout, Ground Improvement by Microbial Induced Carbonate Precipitation[D]. Netherlands: Delft University of Technology, 2009.

    [5] 刘汉龙, 肖鹏, 肖杨, 等. MICP胶结钙质砂动力特性试验研究[J]. 岩土工程学报, 2018, 40(1): 38-45. doi: 10.11779/CJGE201801002

    LIU Hanlong, XIAO Peng, XIAO Yang, et al. Dynamic behaviors of MICP-treated calcareous sand in cyclic tests[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 38-45. (in Chinese) doi: 10.11779/CJGE201801002

    [6] 钱春香, 王安辉, 王欣. 微生物灌浆加固土体研究进展[J]. 岩土力学, 2015, 36(6): 1537-1548. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201506003.htm

    QIAN Chunxiang, WANG Anhui, WANG Xin. Advances of soil improvement with bio-grouting[J]. Rock and Soil Mechanics, 2015, 36(6): 1537-1548. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201506003.htm

    [7] 李驰, 王硕, 王燕星, 等. 沙漠微生物矿化覆膜及其稳定性的现场试验研究[J]. 岩土力学, 2019, 40(4): 1291-1298. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201904007.htm

    LI Chi, WANG Shuo, WANG Yanxing, et al. Field experimental study on stability of bio-mineralization crust in the desert[J]. Rock and Soil Mechanics, 2019, 40(4): 1291-1298. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201904007.htm

    [8] 何稼, 楚剑, 刘汉龙, 等. 微生物岩土技术的研究进展[J]. 岩土工程学报, 2016, 38(4): 643-653. doi: 10.11779/CJGE201604008

    HE Jia, CHU Jian, LIU Hanlong, et al. Research advances in biogeotechnologies[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 643-653. (in Chinese) doi: 10.11779/CJGE201604008

    [9] 刘士雨, 俞缙, 曾伟龙, 等. 微生物诱导碳酸钙沉淀修复三合土裂缝效果研究[J]. 岩石力学与工程学报, 2020, 39(1): 191-204. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202001020.htm

    LIU Shiyu, YU Jin, ZENG Weilong, et al. Repair effect of tabia cracks with microbially induced carbonate precipitation[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(1): 191-204. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202001020.htm

    [10] 孙潇昊, 缪林昌, 吴林玉, 等. 低温条件微生物MICP沉淀产率试验研究[J]. 岩土工程学报, 2019, 41(6): 1133-1138. doi: 10.11779/CJGE201906018

    SUN Xiaohao, MIAO Linchang, WU Linyu, et al. Experimental study on precipitation rate of MICP under low temperatures[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 1133-1138. (in Chinese) doi: 10.11779/CJGE201906018

    [11]

    LÜ C, TANG C S, ZHU C, et al. Environmental dependence of microbially induced calcium carbonate crystal precipitations: experimental evidence and insights[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2022, 148(7): 04022050. doi: 10.1061/(ASCE)GT.1943-5606.0002827

    [12]

    DYER M, VIGANOTTI M. Oligotrophic and eutrophic MICP treatment for silica and carbonate sands[J]. Bioinspired Biomimetic and Nanobiomaterials, 2017, 6(3): 168-183. doi: 10.1680/jbibn.16.00002

    [13]

    MONTOYA B M. Bio-Mediated Soil Improvement and the Effect of Cementation on the Behavior, Improvement, and Performance of Sand[D]. Davis: University of California, 2012.

    [14]

    CHUNG F H. Quantitative interpretation of X-ray diffraction patterns of mixtures: Ⅱ Adiabatic principle of X-ray diffraction analysis of mixtures[J]. Journal of Applied Crystallography, 1974, 7(6): 526-531. doi: 10.1107/S0021889874010387

    [15]

    DOWNS R T, HALL-WALLACE M. The American mineralogist crystal structure database[J]. American Mineralogist, 2003, 88(1): 247-250.

    [16]

    SEIFAN M, BERENJIAN A. Application of microbially induced calcium carbonate precipitation in designing bio self-healing concrete[J]. World Journal of Microbiology and Biotechnology, 2018, 34(11): 115-168.

    [17]

    GÖRGEN S, BENZERARA K, SKOURI-PANET F, et al. The diversity of molecular mechanisms of carbonate biomineralization by bacteria[J]. Discover Materials, 2020, 1(1): 1-20.

    [18]

    DEJONG J T, MORTENSEN B M, MARTINEZ B C, et al. Bio-mediated soil improvement[J]. Ecological Engineering, 2010, 36(2): 197-210. doi: 10.1016/j.ecoleng.2008.12.029

    [19]

    ZHONG H, LIU G S, JIANG Y B, et al. Transport of bacteria in porous media and its enhancement by surfactants for bioaugmentation: a review[J]. Biotechnology Advances, 2017, 35(4): 490-504. doi: 10.1016/j.biotechadv.2017.03.009

    [20]

    LIU Y, ZHANG C, HILPERT M, et al. Transport of Cryptosporidium parvum oocysts in a silicon micromodel[J]. Environ Sci Technol, 2012, 46(3): 1471-1479. doi: 10.1021/es202567t

    [21]

    HOGG R, HEALY T W, FUERSTENAU D W. Mutual coagulation of colloidal dispersions[J]. Transactions of The Faraday Society, 1966, 62: 1638-1651. doi: 10.1039/tf9666201638

    [22]

    GREGORY J. Approximate expressions for retarded van der waals interaction[J]. Journal of Colloid and Interface Science, 1981, 83(1): 138-145. doi: 10.1016/0021-9797(81)90018-7

    [23]

    LIU Y, KUHLENSCHMIDT M S, KUHLENSCHMIDT T B, et al. Composition and conformation of cryptosporidium parvum oocyst wall surface macromolecules and their Effect on Adhesion Kinetics of oocysts on quartz surface[J]. Biomacromolecules, 2010, 11(8): 2109-2115. doi: 10.1021/bm100477j

    [24]

    SHARMA P K, HANUMANTHA RAO K. Analysis of different approaches for evaluation of surface energy of microbial cells by contact angle goniometry[J]. Advances in Colloid and Interface Science, 2002, 98(3): 341-463. doi: 10.1016/S0001-8686(02)00004-0

    [25]

    VAN OSS C J. Acid-base interfacial interactions in aqueous media[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1993, 78: 1-49.

    [26]

    JANCZUK B, ZDZIENNICKA A. A study on the components of surface free energy of quartz from contact angle measurements[J]. Journal of Materials Science, 1994, 29(13): 3559-3564. doi: 10.1007/BF00352063

    [27]

    HOLYSZ L, CHIBOWSKI E. Surface free energy components of calcium carbonate and their changes due to radiofrequency electric field treatment[J]. Journal of Colloid and Interface Science, 1994, 164(1): 245-251. doi: 10.1006/jcis.1994.1163

    [28]

    YOREO J D, VEKILOV P G. Principles of crystal nucleation and growth[J]. Reviews in Mineralogy & Geochemistry, 2003, 54: 57-93.

    [29] 邬冠群. 造岩矿物表面性质对碳酸钙矿物成核生长过程影响研究[D]. 南京: 南京大学, 2021.

    WU Guanqun. The Effect of Surface Properties of Rock-forming Minerals on Nucleation and Growth of Calccium Carbonates[D]. Nanjing: Nanjing University, 2021. (in Chinese)

    [30]

    LIOLIOU M G, PARASKEVA C A, KOUTSOUKOS P G, et al. Heterogeneous nucleation and growth of calcium carbonate on calcite and quartz[J]. Journal of Colloid and Interface Science, 2007, 308(2): 421-428. doi: 10.1016/j.jcis.2006.12.045

    [31]

    CHANG R, KIM S, LEE S, et al. Calcium carbonate precipitation for CO2 storage and utilization: a review of the carbonate crystallization and polymorphism[J]. Frontiers in Energy Research, 2017, 5: 1-12.

    [32]

    OGINO T, SUZUKI T, SAWADA K. The formation and transformation mechanism of calcium carbonate in water[J]. Geochimica et Cosmochimica Acta, 1987, 51(10): 2757-2767.

    [33]

    CHEN J, XIANG L. Controllable synthesis of calcium carbonate polymorphs at different temperatures[J]. Powder Technology, 2009, 189(1): 64-69.

    [34]

    ZHANG W, JU Y, ZONG Y, et al. In situ real-time study on dynamics of microbially induced calcium carbonate precipitation at a single-cell level[J]. Environ Sci Technol, 2018, 52(16): 9266-9276.

    [35]

    KONOPACKA-LYSKAWA D. Synthesis methods and favorable conditions for spherical vaterite precipitation: a review[J]. Crystals, 2019, 9(4): 223.

    [36]

    TONG H, MA W T, WANG L L, et al. Control over the crystal phase, shape, size and aggregation of calcium carbonate via a l-aspartic acid inducing process[J]. Biomaterials, 2004, 25(17): 3923-3929.

    [37]

    SONDI I, SALOPEK-SONDI B. Influence of the primary structure of enzymes on the formation of CaCO2 polymorphs: a comparison of plant (Canavalia ensiformis) and bacterial (Bacillus pasteurii) ureases[J]. Langmuir, 2005, 21(19): 8876-8882.

    [38]

    RODRIGUEZ-NAVARRO C, JROUNDI F, SCHIRO M, et al. Influence of substrate mineralogy on bacterial mineralization of calcium carbonate: implications for stone conservation[J]. Appl Environ Microbiol, 2012, 78(11): 4017-4029.

    [39]

    RONG H, QIAN C X. Binding functions of microbe cement[J]. Advanced Engineering Materials, 2015, 17(3): 334-340.

    [40]

    SUN T, HAO W T, LI J R, et al. Preservation properties of in situ modified CaCO3–chitosan composite coatings[J]. Food Chemistry, 2015, 183: 217-226.

图(10)
计量
  • 文章访问数:  386
  • HTML全文浏览量:  39
  • PDF下载量:  104
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-16
  • 网络出版日期:  2024-03-24
  • 刊出日期:  2024-08-31

目录

    /

    返回文章
    返回