• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

砂土地基中螺旋锚上拔承载特性试验与理论研究

胡伟, 林天宇, 林志, 冯世进, IVANPuig Damians

胡伟, 林天宇, 林志, 冯世进, IVANPuig Damians. 砂土地基中螺旋锚上拔承载特性试验与理论研究[J]. 岩土工程学报, 2024, 46(8): 1582-1595. DOI: 10.11779/CJGE20230394
引用本文: 胡伟, 林天宇, 林志, 冯世进, IVANPuig Damians. 砂土地基中螺旋锚上拔承载特性试验与理论研究[J]. 岩土工程学报, 2024, 46(8): 1582-1595. DOI: 10.11779/CJGE20230394
HU Wei, LIN Tianyu, LIN Zhi, FENG Shijin, IVAN Puig Damians. Experimental and theoretical studies on modeling of uplift bearing characteristics of screw anchors in sandy soil foundation[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(8): 1582-1595. DOI: 10.11779/CJGE20230394
Citation: HU Wei, LIN Tianyu, LIN Zhi, FENG Shijin, IVAN Puig Damians. Experimental and theoretical studies on modeling of uplift bearing characteristics of screw anchors in sandy soil foundation[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(8): 1582-1595. DOI: 10.11779/CJGE20230394

砂土地基中螺旋锚上拔承载特性试验与理论研究  English Version

基金项目: 

国家自然科学基金项目 52178332

详细信息
    作者简介:

    胡伟(1982—),男,博士,教授,博士生导师,主要从事地基与基础工程方面的教学与研究工作。E-mail: yilukuangben1982@163.com

  • 中图分类号: TU441

Experimental and theoretical studies on modeling of uplift bearing characteristics of screw anchors in sandy soil foundation

  • 摘要: 目前多锚片螺旋锚上拔承载的理论研究需人为引入临界埋深比和临界间距比的概念,这将一个连续演化问题割裂成多种特殊工况,但两个临界值的取值标准又存在不统一的问题,导致理论的工程应用存在风险。基于模型试验并结合数字照相测量技术开展砂土地基中螺旋锚上拔承载特性研究,主要得到以下结论:①单、双锚片螺旋锚上拔荷载位移曲线的变化均可分为增长区间和震荡下降区间两个阶段,埋深比越大,荷载峰值越高,但随之增强的土拱效应也导致曲线震荡幅度越显著。②抗拔承载力突破因子Nγ随埋深比的变化曲线存在峰值特征,先快速增大后缓慢减小;下层锚承载力发挥系数η随间距比的增大呈先快后缓的增加趋势。③多锚片螺旋锚的各层锚片对应的破坏滑动面均可用随埋深比增大长短轴比逐渐减小的椭圆来刻画,首层锚滑动面与同埋深下单锚片滑动面形态一致,下层锚滑动面的椭圆长短轴之比受到间距比变化的影响可分为3个阶段。④多锚片螺旋锚的首层锚和下层锚各自有3种滑动面工况,对应3种力学模型,这取决于埋深比和间距比,螺旋锚总的上拔承载力学模型由它们组合而成。⑤推导建立了多锚片螺旋锚上拔承载力计算方法,该方法可以考虑任意锚片数量、埋深比和间距比,并通过对4个松砂和中密砂地基中试验案例的计算验证了该方法的有效性。
    Abstract: At present, it is necessary to introduce the concepts of the critical burial depth ratio and critical spacing ratio artificially into the theoretical researches on the uplift bearing of screw anchors with multiple blades, which divides a continuous evolution problem into two special working conditions. However, the criteria of the two critical values are inconsistent, leading to risks in the engineering application of the theory. Based on model tests and combined with the digital photographic measurement technology, the studies on the uplift bearing characteristics of screw anchors in sandy soil foundation are made, and the main conclusions are drawn as follows: (1) The variation of the uplift load displacement curves of the screw anchors with single and double blades can be divided into two stages, growth interval and oscillation decline interval. The larger the burial depth ratio, the higher the peak load, but then the enhanced soil arching effects also lead to the more significant oscillation amplitude of the curve. (2) The curve of the breakout factor Nγ with the burial depth ratio has a peak characteristic, which increases rapidly first and then decreases slowly. The bearing capacity playing coefficient η of lower blade increases rapidly and then increases slowly with the increase of spacing ratio. (3) The failure sliding surface corresponding to each layer of the screw anchor with multi-blades can be characterized by an ellipse with the decreasing axis ratio as the depth ratio increases. and the sliding surface shape of the first blade is consistent with that of the single blade with the same burial depth. The axis ratio of the ellipse of the sliding surface of the lower anchor can be divided into three stages under the influences of spacing ratio. (4) There are three sliding surface conditions of the first-layer anchor and the lower-layer anchors, respectively, corresponding to three mechanical models, which depend on the buried depth ratio and the spacing ratio. The overall mechanical model for the screw anchors is composed of them. (5) A method for calculating the uplifting capacity of the screw anchors with multiple anchor plates is developed to consider any number of anchor blades, buried depth ratio and spacing ratio. The effectiveness of the proposed method is verified by the calculation of four test cases in loose sand and medium-dense sand foundation.
  • 图  1   典型双锚片螺旋锚竖向拉拔破坏模式

    Figure  1.   Typical uplift failure modes of screw anchors with double blades

    图  2   平板圆锚模型

    Figure  2.   Model for circular flat anchor

    图  3   代表性荷载-位移曲线

    Figure  3.   Representative load-displacement curves

    图  4   空腔变化与荷载位移曲线对应关系

    Figure  4.   Relationship between cavity change and load-displacement curve (H/D=8)

    图  5   Nγ随埋深比变化规律

    Figure  5.   Variation of Nγ with burial depth ratio

    图  6   荷载-位移曲线

    Figure  6.   Load-displacement curves

    图  7   发挥系数η随间距比变化

    Figure  7.   Variation of η with spacing ratio

    图  8   空腔变化与滑动面形成的相关力学机制

    Figure  8.   Mechanical mechanism of cavity variation and sliding surface formation

    图  9   单锚片滑动面随埋深比变化

    Figure  9.   Variation of sliding surface with burial depth ratio of single blade

    图  10   a/b随埋深比变化规律

    Figure  10.   Variation of a/b with burial depth ratio

    图  11   双锚片滑动面随埋深比变化(S/D=1)

    Figure  11.   Variation of sliding surface with burial depth ratio of double blades (S/D=1)

    图  12   滑动面随间距比变化(H/D=2)

    Figure  12.   Variation of sliding surface with spacing ratio(H/D=2)

    图  13   滑动面随间距比变化(H/D=6)

    Figure  13.   Variation of sliding surface with spacing ratio(H/D=6)

    图  14   a/b随埋深比的变化规律

    Figure  14.   Variation of a/b with burial depth ratio

    图  15   下层锚和相同埋深比单锚的a/b对比

    Figure  15.   Comparison of a/b between lower anchor and single anchor with same burial depth ratio

    图  16   首层锚滑动面3种形态

    Figure  16.   Three types of sliding surfaces of first anchor blade

    图  17   下层锚滑动面3种形态

    Figure  17.   Three types of sliding surfaces of lower anchor blade

    图  18   隔离体受力分析

    Figure  18.   Force analysis of isolators

    图  19   本文试验值与计算值对比

    Figure  19.   Comparison between calculated and measured values

    图  20   试验值与计算值对比

    Figure  20.   Comparison between calculated and measured values

    表  1   不同临界间距比取值标准

    Table  1   Different standards of critical spacing ratio

    标准来源 临界间距比(S/D 土体类别
    Tsuha等[4] 3 砂土
    Tappenden等[12] 2 天然土
    Merifield [13] 1.58 黏性土
    Stanier等[16] 3 软黏土
    姚敬宇[17] 2 密砂
    郝冬雪等[18] 1.5 中密砂
    下载: 导出CSV

    表  2   试验用砂物理力学指标

    Table  2   Physical and mechanical indexes of test sand

    Dr Cu Cc φ/(°) ρdmin/
    (g·cm-3)
    ρdmax/
    (g·cm-3)
    γ/(kN·m-3)
    0.57 2.5 1.1 33.1 1.616 1.766 16.56
    下载: 导出CSV

    表  3   试验工况

    Table  3   Test conditions

    锚片数 首层锚埋深比H/D 锚片间距比S/D
    1 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 0
    2 1, 2, 4, 6, 8 1.0, 1.5, 2.0, 3.0, 4.5, 6.0
    下载: 导出CSV

    表  4   双锚片螺旋锚滑动面组合形态

    Table  4   Combined forms of sliding surface of screw anchors with double blades

    工况 1 2 3 4 5 6 7 8 9
    首层滑动面
    下层滑动面
    下载: 导出CSV

    表  5   试验案例基本情况

    Table  5   Basic information of experimental cases

    案例 内摩擦角φ/(°) 重度γ/(kN·m-3) 相对密实度Dr/% 直径D/mm 埋深比(H/D) 间距比(S/D)
    33.1 15.56 57 50 1/2/4/6/8 1.0/1.5/2.0/3.0/4.5/6.0
    30.0 14.44 23~32 50 4/5 1.5/2.0
    31.0 13.82 33~42 50 5 0/1.0/1.5/2.0
    32.0 19.00 44 20 6 0/1.5/3.0/4.5/6.0
    下载: 导出CSV
  • [1] 汪滨. 螺旋锚技术及其在工程中的应用[M]. 北京: 中国水利水电出版社, 2005.

    WANG Bin. Screw Anchor Technique and its Application in Engineering[M]. Beijing: China Water & Power Press, 2005. (in Chinese)

    [2] 曹广礼, 崔维钧. 输电线路铁塔基础锚具的研究[J]. 电力建设, 1992(4): 60-70. https://www.cnki.com.cn/Article/CJFDTOTAL-DLJS199204019.htm

    CAO Guangli, CUI Weijun. Study of tower foundation anchorage for transmission lines[J]. Electric Power Construction, 1992(4): 60-70. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DLJS199204019.htm

    [3] 董天文, 梁力, 王明恕, 等. 极限荷载条件下螺旋桩的螺距设计与承载力计算[J]. 岩土工程学报, 2006, 28(11): 2031-2034. http://cge.nhri.cn/cn/article/id/12231

    DONG Tianwen, LIANG Li, WANG Ming-shu, et al. Pitch of screws and bearing capacity of screw piles under ultimate load[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(11): 2031-2034. (in Chinese) http://cge.nhri.cn/cn/article/id/12231

    [4]

    TSUHA C H C, AOKI N, RAULT G, et al. Evaluation of the efficiencies of helical anchor plates in sand by centrifuge model tests[J]. Canadian Geotechnical Journal, 2012, 49(9): 1102-1114. doi: 10.1139/t2012-064

    [5] 张昕. 螺旋锚锚周土体变形试验与抗拔承载力计算模型研究[D]. 郑州: 郑州大学, 2014.

    ZHANG Xin. Experimental Analysis of Soil Deformation Around Uplifting Screw Anchors and Theoretical Research of Uplifting Capacity Models[D]. Zhengzhou: Zhengzhou University, 2014. (in Chinese)

    [6]

    MURRAY E J, GEDDES J D. Uplift of anchor plates in sard[J]. Journal of Geotechnical Engineering, 1987, 113(3): 202-215. doi: 10.1061/(ASCE)0733-9410(1987)113:3(202)

    [7] 朱鸿鹄, 高宇新, 李元海, 等. 土工格栅加筋砂土中水平锚板抗拔特性试验研究[J]. 岩土力学, 2022, 43(5): 1207-1214. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202205006.htm

    ZHU Honghu, GAO Yuxin, LI Yuanhai, et al. Experimental study of pullout behavior of horizontal anchor plates in geogrid reinforced sand[J]. Rock and Soil Mechanics, 2022, 43(5): 1207-1214. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202205006.htm

    [8] 董天文, 梁力, 黄连壮, 等. 螺旋桩基础抗拔试验研究[J]. 岩土力学, 2009, 30(1): 186-190. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200901043.htm

    DONG Tianwen, LIANG Li, HUANG Lianzhuang, et al. Pullout test of screw pile foundation[J]. Rock and Soil Mechanics, 2009, 30(1): 186-190. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200901043.htm

    [9]

    ILAMPARUTHI K, DICKIN E A, MUTHUKRISNAIAH K. Experimental investigation of the uplift behavior of circular plate anchors embedded in sand[J]. Canadian Geotechnical Journal, 2002, 39(3): 648-664. doi: 10.1139/t02-005

    [10] 姚琛, 胡伟, 孟建伟, 等. 砂土中水平条形锚板竖向拉拔承载力统一计算方法研究[J]. 工程力学, 2021, 38(5): 209-218. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX202105020.htm

    YAO Chen, HU Wei, MENG Jianwei, et al. Unified method for calculation of vertical pulling capacity of horizontal strip anchor plate in sand[J]. Engineering Mechanics, 2021, 38(5): 209-218. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX202105020.htm

    [11]

    RAO S N, PRASAD Y, SHETTYB M D. The behaviour of model screw piles in cohesive soils[J]. Soils and Foundations, 2008, 31(2): 35-50.

    [12]

    TAPPENDEN K, SEGO D, ROBERTSON P. Load transfer behavior of full-scale instrumented screw anchors[C]// International Foundation Congress & Equipment Expo. 2009.

    [13]

    MERIFIELD R S. Ultimate uplift capacity of multiplate helical type anchors in clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 137(7): 704-716.

    [14]

    GHALY A, HANNA A. Stresses and strains around helical screw anchors in sand[J]. Soils and Foundations, 1992, 32(4): 27-42.

    [15] 朱长歧, 初晓锋. 钙质砂中锚定板的极限抗拔力计算[J]. 岩土力学, 2003, 24(增刊2): 153-158. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2003S2034.htm

    ZHU Changqi, CHU Xiaofeng. Calculation of ultimate extraction resistence of anchoring plates in calcaress sands[J]. Rock and Soil Mechanics, 2003, 24(S2): 153-158. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2003S2034.htm

    [16]

    STANIER S A, BLACK J A, HIRD C C. Modelling helical screw piles in soft clay and design implications[J]. Geotechnical Engineering, 2014, 167(5): 447-460.

    [17] 姚敬宇. 砂土中多节螺旋锚抗拔承载特性及锚土变形模型试验研究[D]. 郑州: 华北水利水电大学, 2017.

    YAO Jingyu. Experimental Study on Uplift Capacity and Soil Deformation Around Multiplate Helical Type Anchors in Sand[D]. Zhengzhou: North China University of Water Resources and Electric Power, 2017. (in Chinese)

    [18] 郝冬雪, 陈榕, 符胜男. 砂土中螺旋锚上拔承载特性模型试验研究[J]. 岩土工程学报, 2015, 37(1): 126-132. doi: 10.11779/CJGE201501015

    HAO Dongxue, CHEN Rong, FU Shengnan. Experimental study on uplift capacity of multi-helix anchors in sand[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(1): 126-132. (in Chinese) doi: 10.11779/CJGE201501015

    [19] 林志, 胡伟, 赵璞, 等. 砂土中平板圆锚倾斜拉拔承载特性模型试验研究[J]. 岩土力学, 2021, 42(11): 3059-3068, 3168. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202111016.htm

    LIN Zhi, HU Wei, ZHAO Pu, et al. Experimental study on the uplift behavior of circular anchor plate inclined drawing in sand[J]. Rock and Soil Mechanics, 2021, 42(11): 3059-3068, 3168. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202111016.htm

    [20]

    ROWE R K, DAVIS E H. The behaviour of anchor plates in sand[J]. Géotechnique, 1982, 32(1): 25-41.

    [21]

    BRADSHAW A S, GERKUS H, FANNING J, et al. Scaling considerations for 1-g model horizontal plate anchor tests in sand[J]. Geotechnical Testing Journal, 2016, 39(6): 1-9.

    [22]

    DICKIN E A, LAMAN M. Uplift response of strip anchors in cohesionless soil[J]. Advances in Engineering Software, 2006, 38(8): 618-625.

    [23] 初晓锋, 李志刚, 汪稔, 等. 钙质砂中锚定物锚固性能的试验研究[J]. 岩土力学, 2002, 23(3): 368-371. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200203028.htm

    CHU Xiaofeng, LI Zhigang, WANG Ren, et al. The test research of anchor's uplift behavior in calcareous sand[J]. Rock and Soil Mechanics, 2002, 23(3): 368-371. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200203028.htm

    [24]

    MERIFIELD R S, LYAMIN A V, SLOAN S W. Three- dimensional lower-bound solutions for the stability of plate anchors in sand[J]. Géotechnique, 2006, 56(2): 123-132.

    [25]

    LIU J Y, LIU M L, ZHU Z D. Sand deformation around an uplift plate anchor[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(6): 728-737.

    [26]

    CERFONTAINE B, KNAPPETT J A, BROWN M J, et al. Effect of soil deformability on the failure mechanism of shallow plate or screw anchors in sand[J]. Computers and Geotechnics, 2019, 109: 34-45.

    [27]

    CHOUDHARY A. Pullout Behaviour of Strip Anchor in Soil Using FLAC2D[C]// Indian Geotechnical Conference 2017. Hyderabad, 2017.

    [28] 侯世伟, 高广亮, 张皓, 等. 螺旋锚复合基础对村镇生土建筑抗震性能影响研究[J]. 防灾减灾工程学报, 2023, 43(4): 778-786, 796. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK202304016.htm

    HOU Shiwei, GAO Guangliang, ZHANG Hao, et al. Influence of screw anchor composite foundation on seismic performance of rural raw soil buildings[J]. Journal of Disaster Prevention and Mitigation Engineering, 2023, 43(4): 778-786, 796. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK202304016.htm

    [29] 史旦达, 俞快, 毛逸瑶, 等. 松砂中双叶片螺旋锚上拔承载及土体变形特性试验研究[J]. 岩土力学, 2022, 43(11): 3059-3072, 3082. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202211013.htm

    (SHI Danda, YU Kuai, MAO Yiyao, et al. Experimental study on the uplift behavior and soil deformation characteristics of the double-blade screw anchor in loose sand[J]. Rock and Soil Mechanics, 2022, 43(11): 3059-3072, 3082. (in Chinese https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202211013.htm

    [30] 胡伟, 张翰林, 孟建伟, 等. 砂土中倾斜条形锚板法向拉拔承载特性研究[J]. 岩土工程学报, 2023, 45(7): 1451-1460. doi: 10.11779/CJGE20220474

    HU Wei, ZHANG Hanlin, MENG Jianwei, et al. Research on normal pullout bearing characteristics of inclined strip anchor plate in sand[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(7): 1451-1460. (in Chinese) doi: 10.11779/CJGE20220474

    [31] 杨枭, 胡伟, 孟建伟, 等. 基于椭圆型滑动面的砂土中条形锚板上拔承载力计算方法[J]. 海洋工程, 2023, 41(3): 177-184. https://www.cnki.com.cn/Article/CJFDTOTAL-HYGC202303017.htm

    YANG Xiao, HU Wei, MENG Jianwei, et al. Calculation method of uplift bearing capacity of strip anchor plate in sand based on elliptical sliding surface[J]. The Ocean Engineering, 2023, 41(3): 177-184. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HYGC202303017.htm

    [32] 顾晓强, 吴瑞拓, 梁发云, 等. 上海土体小应变硬化模型整套参数取值方法及工程验证[J]. 岩土力学, 2021, 42(3): 833-845. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202103026.htm

    GU Xiaoqiang, WU Ruituo, LIANG Fayun, et al. On HSS model parameters for Shanghai soils with engineering verification[J]. Rock and Soil Mechanics, 2021, 42(3): 833-845. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202103026.htm

图(20)  /  表(5)
计量
  • 文章访问数:  604
  • HTML全文浏览量:  104
  • PDF下载量:  129
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-04
  • 网络出版日期:  2023-11-29
  • 刊出日期:  2024-07-31

目录

    /

    返回文章
    返回