Cyclic loading and unloading true triaxial tests on remolded loess
-
摘要: 针对不同应力路径往返加卸载条件下黄土累积塑性应变发展特性,以重塑黄土为研究对象,利用真三轴仪开展不同应力路径的往返加卸载试验研究,探究不同应力路径、应力幅值下黄土的循环应力时程曲线、滞回曲线、骨干曲线及累积塑性应变曲线的影响规律。揭示了应力路径对重塑黄土力学特性的影响,描述了各主应力与中主应力比b和应力幅值的相关性,提出了重塑黄土的滞回曲线近似呈椭圆形,长轴斜率随中主应力比b值的增大而增大,随应力幅值的增大而减小;随着中主应力比b值的增大,循环应力-应变骨干曲线随之硬化,累积塑性应变曲线依次降低,且累积塑性应变发展更早的进入平缓阶段,为解决相关黄土工程问题提供了参考。Abstract: Aiming at the development characteristics of cumulative plastic strain of loess under different stress paths under cyclic loading and unloading conditions, the remolded loess is taken as the research object, and the round-trip loading and unloading tests under different stress paths are conducted using a true triaxial apparatus to explore the influences of different stress paths and amplitudes on the cyclic stress time-history curve, hysteresis curve, backbone curve and cumulative plastic strain curve of loess. The results reveal the effects of the stress paths on the mechanical properties of the remolded loess, describe the correlation among each principal stress, ratio of the intermediate principal stress and the stress amplitude, and the hysteresis curve of the remolded loess is proposed to be approximately elliptical, with the slope of the major axis increasing with the increase of the ratio of the principal stress and decreasing with the increase of the stress amplitude. As the value of the ratio of the principal stress ratio increase, the backbone curve of cyclic stress-strain hardens accordingly, the cumulative plastic strain curve decreases in sequence, and the cumulative plastic strain develops earlier and enters a gentle stage. The research results provide a reference for solving the relevant problems in loess engineering.
-
-
表 1 土的主要物理性质参数
Table 1 Physical parameters of specimens
相对质量密度Gs 干密度ρd/
(g·cm-3)天然含水率w/% 液限
wL/%塑限
wP/%塑性指数IP 2.70 1.40 21.00 34.20 18.60 15.60 表 2 真三轴试验方案
Table 2 True triaxial test schemes
固结围压σ3/kPa 应力幅值σm /kPa 中主应力比b 200 60,80,100,120 0,0.5,1 300 90,120,150,180 0,0.5,1 -
[1] 谢定义, 邢义川. 黄土土力学[M]. 北京: 高等教育出版社, 2016. XIE Dingyi, XING Yichuan. Soil Mechanics for Loess Soils[M]. Beijing: Higher Education Press, 2016. (in Chinese)
[2] 李骏, 邵生俊, 佘芳涛, 等. 砂井浸水试验在黄土隧道地基湿陷变形评价中的应用研究[J]. 岩石力学与工程学报, 2019, 38(9): 1937-1944. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201909022.htm LI Jun, SHAO Shengjun, SHE Fangtao, et al. Application research of sand well immersion test in collapsibility evaluation of loess tunnel foundations[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(9): 1937-1944. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201909022.htm
[3] 钟秀梅, 王谦, 刘钊钊, 等. 干湿循环作用下粉煤灰改良黄土路基的动强度试验研究[J]. 岩土工程学报, 2020, 42(增刊1): 95-99. doi: 10.11779/CJGE2020S1019 ZHONG Xiumei, WANG Qian, LIU Zhaozhao, et al. Dynamic strength of fly ash-modified loess subgrade under influences of drying-wetting cycle[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S1): 95-99. (in Chinese) doi: 10.11779/CJGE2020S1019
[4] 来弘鹏, 刘苗, 谢永利. 黄土地区浅埋暗挖三连拱地铁隧道围岩压力特征研究[J]. 岩石力学与工程学报, 2011, 30(增刊1): 3103-3111. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S1067.htm LAI Hongpeng, LIU Miao, XIE Yongli. Study of surrounding rock pressure characteristics of shallow excavation three-arch metro tunnel in loess region[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(S1): 3103-3111. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S1067.htm
[5] 谢定义. 土动力学[M]. 北京: 高等教育出版社, 2011. XIE Dingyi. Soil Dynamics[M]. Beijing: Higher Education Press, 2011. (in Chinese)
[6] 刘维正, 瞿帅, 章定文, 等. 循环荷载下人工结构性土变形与强度特性试验研究[J]. 岩土力学, 2015, 36(6): 1691-1697, 1706. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201506022.htm LIU Weizheng, QU Shuai, ZHANG Dingwen, et al. Experimental study of behavior of deformation and strength of artificial structural soft clay under cyclic loading[J]. Rock and Soil Mechanics, 2015, 36(6): 1691-1697, 1706. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201506022.htm
[7] 庄心善, 赵汉文, 陶高梁, 等. 循环荷载下弱膨胀土累积变形与动强度特性试验研究[J]. 岩土力学, 2020, 41(10): 3192-3200. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202010004.htm ZHUANG Xinshan, ZHAO Hanwen, TAO Gaoliang, et al. Accumulated deformation and dynamic strength properties of weak expansive soil under cyclic loading[J]. Rock and Soil Mechanics, 2020, 41(10): 3192-3200. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202010004.htm
[8] 庄心善, 赵汉文, 王俊翔, 等. 循环荷载下重塑弱膨胀土滞回曲线形态特征定量研究[J]. 岩土力学, 2020, 41(6): 1845-1854. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202006007.htm ZHUANG Xinshan, ZHAO Hanwen, WANG Junxiang, et al. Quantitative research on morphological characteristics of hysteretic curves of remolded weak expansive soil under cyclic loading[J]. Rock and Soil Mechanics, 2020, 41(6): 1845-1854. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202006007.htm
[9] 雷华阳, 姜岩, 陆培毅, 等. 交通荷载作用下结构性软土动应力-动应变关系试验研究[J]. 岩石力学与工程学报, 2008, 27(增刊1): 3052-3057. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2008S1072.htm LEI Huayang, JIANG Yan, LU Peiyi, et al. Experimental study of dynamic stress-strain relation of structural soft soil under traffic load[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(S1): 3052-3057. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2008S1072.htm
[10] 骆亚生. 中国典型黄土动力特性及其参数的试验分析[D]. 西安: 西安理工大学, 2000. LUO Yasheng. Experimental analysis of dynamic characteristics and parameters of typical loess in China[D]. Xi'an: Xi'an University of Technology, 2000. (in Chinese)
[11] 骆亚生. 非饱和黄土在动、静复杂应力条件下的结构变化特性及结构性本构关系研究[D]. 西安: 西安理工大学, 2005. LUO Yasheng. Study on Structural Change Characteristics and Structural Constitutive Relation of Unsaturated Loess under Dynamic and Static Complex Stress Conditions[D]. Xi'an: Xi'an University of Technology, 2005. (in Chinese)
[12] 王兰民. 黄土动力学[M]. 北京: 地震出版社, 2003. WANG Lanmin. Loess Dynamics[M]. Beijing: Seismological Press, 2003. (in Chinese)
[13] 张军, 郑俊杰, 曹文昭, 等. 循环荷载作用下饱和压实黄土动力特性研究[J]. 岩土工程学报, 2013, 35(增刊1): 322-327. http://www.cgejournal.com/cn/article/id/15186 ZHANG Jun, ZHENG Junjie, CAO Wenzhao, et al. Dynamic characteristics of saturated compacted loess under cyclic loads[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S1): 322-327. (in Chinese) http://www.cgejournal.com/cn/article/id/15186
[14] 陈正汉, 郭楠. 非饱和土与特殊土力学及工程应用研究的新进展[J]. 岩土力学, 2019, 40(1): 1-54. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201901002.htm CHEN Zhenghan, GUO Nan. New developments of mechanics and application for unsaturated soils and special soils[J]. Rock and Soil Mechanics, 2019, 40(1): 1-54. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201901002.htm
[15] 陈正汉. 非饱和土与特殊土力学[M]. 北京: 中国建筑工业出版, 2022. CHEN Zhenghan. Mechanics for Unsaturated and Special Soils[M]. Beijing: China Architecture and Building Press, 2022. (in Chinese)
[16] 代倩, 廖红建, 康孝森, 等. 动荷载下填方体压实黄土动应变与动孔压变化规律研究[J]. 岩土工程学报, 2021, 43(增刊1): 235-240. DAI Qian, LIAO Hongjian, KANG Behaviors of dynamic strain and pore pressure of compacted loess in loess-filled foundation induced by dynamic loading[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S1): 235-240. (in Chinese)
[17] 邵生俊, 许萍, 邵帅, 等. 一室四腔刚-柔加载机构真三轴仪的改进与强度试验: 西安理工大学真三轴仪[J]. 岩土工程学报, 2017, 39(9): 1575-1582. doi: 10.11779/CJGE201709004 SHAO Shengjun, XU Ping, SHAO Shuai, et al. Improvement and strength testing of true tri-axial apparatus with one chamber and four cells and rigid-flexible-flexible loading boundary mechanism— true triaxial apparatus developed in Xi'an University of Technology[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(9): 1575-1582. (in Chinese) doi: 10.11779/CJGE201709004
[18] 土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019. Standard for Geotechnical Testing Method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)
[19] HARDIN B O, DRNEVICH V P. Shear modulus and damping in soils: measurement and parameter effects (Terzaghi Leture)[J]. Journal of the Soil Mechanics and Foundations Division, 1972, 98(6): 603-624. doi: 10.1061/JSFEAQ.0001756
-
其他相关附件