One-dimension model for transport of organic contaminants in double-artificial composite liner under thermal osmosis
-
摘要: 建立了热渗透作用下有机污染物在双人工复合衬层中的一维运移模型,利用COMSOL Multiphysics数值软件对模型进行模拟计算并对相关参数进行参数分析。结果表明,即使渗滤液水头hw增大到10 m,双人工复合衬层底部浓度仅增加了4.9%,这表明渗滤液水头对有机污染物在双人工复合衬层中运移的影响较小。当热渗透系数达到5×10-11 m2·K-1·s-1时衬垫系统底部浓度增加了31.5%;热渗透系数kT > 1×10-11 m2·K-1·s-1时,在双人工复合衬层的设计中需要考虑热渗透作用的影响。次衬层中土工膜上连接的褶皱长度和漏洞频率对有机污染物在双人工复合衬层中运移的影响则十分显著,褶皱长度由10 m增加到100 m时底部浓度增加了87%。在双人工复合衬层施工中,严格控制次衬层土工膜施工质量,减少褶皱和漏铜的产生,能有效提高衬垫系统的服役性能。Abstract: A one-dimensional model for transport of organic contaminants in a double-artificial composite liner under thermal osmosis is proposed. The model is simulated by using the COMSOL Multiphysics. The results show that the bottom concentration only increases by 4.9% even when the leachate head increases to 10 m. It means that the effects of leachate head on transport of organic contaminants in the double-artificial composite liner are negligible. The bottom concentration of the double-artificial composite liner system will increase by 31.5% when the coefficient of thermal osmosis increases to 5×10-11 m2·K-1·s-1. The effects of thermal osmosis should be considered in the double-artificial composite liner design when the coefficient of thermal osmosis reaches 1×10-11 m2·K-1·s-1. The length of wrinkle and the frequency of holes on the secondary liner geomembrane have significant effects on contaminant transport in the double-artificial composite liner. The bottom concentration increases by 87% when the length of wrinkle increases from10 to 100 m. In the construction of the double-artificial composite liner, the construction quality of the secondary liner geomembrane should be strictly controlled to reduce the generation of wrinkles and holes, which can effectively improve the service performance of the liner system.
-
Keywords:
- thermal osmosis /
- double-artificial composite liner /
- organic contaminant /
- wrinkle
-
-
表 1 甲苯在各介质中相关运移参数的取值
Table 1 Transport parameters for toluene in liners
参数 厚度L/m 有效扩散系数D/(m2·s-1) 孔隙率n 阻滞因子Rd 渗透系数k/(m·s-1) 漏洞频率m/(个·hm-2) 褶皱宽度b/m 褶皱长度Lw/m 索雷特系数ST/K-1 热渗透系数kT/(m2·K-1·s-1) 渗滤液水头hw/m GMB1/GMB2 0.002 3×10-13 — — — 2.5 0.1 200/30 0.03 1×10-12 0.3 CCL1/CCL2 0.3/0.5 4.1×10-10 0.35 9.8 1×10-9 — — — AL 2 8.9×10-10 0.40 2.1 1×10-7 — — — -
[1] 薛强, 詹良通, 胡黎明, 等. 环境岩土工程研究进展[J]. 土木工程学报, 2020, 53(3): 80-94. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202003010.htm XUE Qiang, ZHAN Liangtong, HU Liming, et al. Environmental geotechnics: state-of-the-art of theory, testing and application to practice[J]. China Civil Engineering Journal, 2020, 53(3): 80-94. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202003010.htm
[2] 周正兵, 王钊, 费香泽. 用于固体废弃物填埋场中的两种复合防渗系统的比较[J]. 环境工程, 2002, 20(3): 55-59, 5. doi: 10.3969/j.issn.1000-8942.2002.03.019 ZHOU Zhengbing, WANG Zhao, FEI Xiangze. Comparision of two kinds of composite impervious systems used in solid waste landfills[J]. Environmental Engineering, 2002, 20(3): 55-59, 5. (in Chinese) doi: 10.3969/j.issn.1000-8942.2002.03.019
[3] 周炼, 安达, 杨延梅, 等. 危险废物填埋场复合衬层渗漏分析与污染物运移预测[J]. 环境科学学报, 2017, 37(6): 2210-2217. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201706024.htm ZHOU Lian, AN Da, YANG Yanmei, et al. Predicting leakage and contaminant transport through composite liners in hazardous waste landfill[J]. Acta Scientiae Circumstantiae, 2017, 37(6): 2210-2217. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201706024.htm
[4] 谢海建, 陈云敏, 楼章华. 污染物通过有缺陷膜复合衬垫的一维运移解析解[J]. 中国科学: 技术科学, 2010, 40(5): 486-495. doi: 10.3969/j.issn.0253-2778.2010.05.0008 XIE Haijian, CHEN Yunmin, LOU Zhanghua. Analytical solution of one-dimensional migration of pollutants through defective membrane composite liner[J]. Scientia Sinica (Technologica), 2010, 40(5): 486-495. (in Chinese) doi: 10.3969/j.issn.0253-2778.2010.05.0008
[5] 冯世进, 彭明清, 陈樟龙, 等. 复合衬垫中污染物一维瞬态扩散-对流运移规律研究[J]. 岩土工程学报, 2022, 44(5): 799-809. doi: 10.11779/CJGE202205002 FENG Shijin, PENG Mingqing, CHEN Zhanglong, et al. One-dimensional transport of transient diffusion- advection of organic contaminant through composite liners[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(5): 799-809. (in Chinese) doi: 10.11779/CJGE202205002
[6] 张春华, 吴家葳, 陈赟, 等. 基于污染物击穿时间的填埋场复合衬垫厚度简化设计方法[J]. 岩土工程学报, 2020, 42(10): 1841-1848. doi: 10.11779/CJGE202010009 ZHANG Chunhua, WU Jiawei, CHEN Yun, et al. Simplified method for determination of thickness of composite liners based on contaminant breakthrough time[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1841-1848. (in Chinese) doi: 10.11779/CJGE202010009
[7] 张春华, 黄江东, 李晓宙, 等. 热扩散作用下污染物在CCL中运移的一维解析模型及其应用[J]. 岩土工程学报, 2023, 45(3): 541-550. doi: 10.11779/CJGE20211427 ZHANG Chunhua, HUANG Jiangdong, LI Xiaozhou, et al. One-dimensional analytical model for contaminant transport through CCL under thermal diffusion and its application[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 541-550. (in Chinese) doi: 10.11779/CJGE20211427
[8] 李江山, 江文豪, 葛尚奇, 等. 非等温分布条件下压实黏土衬垫中固结与污染物运移耦合模型研究[J]. 岩土工程学报, 2022, 44(11): 2071-2080. doi: 10.11779/CJGE202211013 LI Jiangshan, JIANG Wenhao, GE Shangqi, et al. Coupling model for consolidation and contaminant transport in compacted clay liners under non-isothermal condition[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(11): 2071-2080. (in Chinese) doi: 10.11779/CJGE202211013
[9] CHEN Y F, ZHOU C B, JING L R. Modeling coupled THM processes of geological porous media with multiphase flow: theory and validation against laboratory and field scale experiments[J]. Computers and Geotechnics, 2009, 36(8): 1308-1329. doi: 10.1016/j.compgeo.2009.06.001
[10] GHASSEMI A, TAO Q, DIEK A. Influence of coupled chemo-poro-thermoelastic processes on pore pressure and stress distributions around a wellbore in swelling shale[J]. Journal of Petroleum Science and Engineering, 2009, 67(1/2): 57-64.
[11] GONÇALVÈS J, DE MARSILY G, TREMOSA J. Importance of thermo-osmosis for fluid flow and transport in clay formations hosting a nuclear waste repository[J]. Earth and Planetary Science Letters, 2012, 339/340: 1-10. doi: 10.1016/j.epsl.2012.03.032
[12] GONÇALVÈS J, TRÉMOSA J. Estimating thermo-osmotic coefficients in clay-rocks: I. Theoretical insights[J]. Journal of Colloid and Interface Science, 2010, 342(1): 166-174. doi: 10.1016/j.jcis.2009.09.056
[13] THOMAS H R, VARDON P J, CLEALL P J. Three-dimensional behaviour of a prototype radioactive waste repository in fractured granitic rock[J]. Canadian Geotechnical Journal, 2014, 51(3): 246-259. doi: 10.1139/cgj-2013-0094
[14] SOLER J M. The effect of coupled transport phenomena in the Opalinus Clay and implications for radionuclide transport[J]. Journal of Contaminant Hydrology, 2001, 53(1/2): 63-84.
[15] ZAGORŠČAK R, SEDIGHI M, THOMAS H R. Effects of thermo-osmosis on hydraulic behavior of saturated clays[J]. International Journal of Geomechanics, 2017, 17(3): 04016068. doi: 10.1061/(ASCE)GM.1943-5622.0000742
[16] 张志红, 韩林, 田改垒. 饱和土体热-水-力-化全耦合一维溶质运移模型[J]. 东南大学学报(自然科学版), 2019, 49(6): 1178-1186. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201906022.htm ZHANG Zhihong, HAN Lin, TIAN Gailei. One-dimensional transport model for solute with thermo-hydro-mechanical-chemical soupling in saturated soil[J]. Journal of Southeast University (Natural Science Edition), 2019, 49(6): 1178-1186. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201906022.htm
[17] 田改垒, 张志红. 考虑热效应的污染物在土中扩散、渗透和固结耦合模型[J]. 岩土工程学报, 2022, 44(2): 278-287. doi: 10.11779/CJGE202202009 TIAN Gailei, ZHANG Zhihong. Coupled model for contaminant diffusion, osmosis and consolidation in soil considering thermal effects[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(2): 278-287. (in Chinese) doi: 10.11779/CJGE202202009
[18] XIE H J, CHEN Y M, LOU Z H. An analytical solution to contaminant transport through composite liners with geomembrane defects[J]. Science China Technological Sciences, 2010, 53(5): 1424-1433. doi: 10.1007/s11431-010-0111-7
[19] ROWE R K. Geosynthetics and the minimization of contaminant migration through barrier systems beneath solid waste[C]//Proceedings of the Sixth International Conference on Geosynthetics. Atlanta, 1998.
[20] KALBE U, MÜLLER W W, BERGER W, et al. Transport of organic contaminants within composite liner systems[J]. Applied Clay Science, 2002, 21(1/2): 67-76.
[21] ROWE R K. Long-term performance of contaminant barrier systems[J]. Géotechnique, 2005, 55(9): 631-678. doi: 10.1680/geot.2005.55.9.631
[22] XIE H J, JIANG Y S, ZHANG C H, et al. An analytical model for volatile organic compound transport through a composite liner consisting of a geomembrane, a GCL, and a soil liner[J]. Environmental Science and Pollution Research, 2015, 22(4): 2824-2836. doi: 10.1007/s11356-014-3565-5
[23] XIE H J, CHEN Y M, KE H, et al. Analysis of diffusion-adsorption equivalency of landfill liner systems for organic contaminants[J]. Journal of Environmental Sciences, 2009, 21(4): 552-560. doi: 10.1016/S1001-0742(08)62307-4
[24] XIE H, ZHANG C H, FENG S J, et al. Analytical model for degradable organic contaminant transport through a GMB/GCL/AL system[J]. Journal of Environmental Engineering, 2018, 144: 04018006. doi: 10.1061/(ASCE)EE.1943-7870.0001338
[25] 张春华. 填埋场复合衬垫污染物热扩散运移规律及其优化设计方法[D]. 杭州: 浙江大学, 2018. ZHANG Chunhua. Mechanisms for Contaminant Transport in Landfill Composite Liners under Thermal Effect and its Optimization Design Method[D]. Hangzhou: Zhejiang University, 2018. (in Chinese)
[26] WU X, SHI J Y, HE J. Analytical solutions for diffusion of organic contaminant through GCL triple-layer composite liner considering degradation in liner[J]. Environmental Earth Sciences, 2016, 75(20): 1-18.
[27] LIU C L, ZHANG F G, ZHANG Y, et al. Experimental and numerical study of pollution process in an aquifer in relation to a garbage dump field[J]. Environmental Geology, 2005, 48(8): 1107-1115. doi: 10.1007/s00254-005-0052-9
[28] DU Y J, SHEN S L, LIU S Y, et al. Contaminant mitigating performance of Chinese standard municipal solid waste landfill liner systems[J]. Geotextiles and Geomembranes, 2009, 27(3): 232-239. doi: 10.1016/j.geotexmem.2008.11.007
[29] XIE H J, CHEN Y M, ZHAN L T, et al. Investigation of migration of pollutant at the base of Suzhou Qizishan landfill without a liner system[J]. Journal of Zhejiang University-SCIENCE A, 2009, 10(3): 439-449. doi: 10.1631/jzus.A0820299
[30] ZHAN T L T, CHEN Y M, LING W A. Shear strength characterization of municipal solid waste at the Suzhou landfill, China[J]. Engineering Geology, 2008, 97(3/4): 97-111.
[31] CHAPPEL M J, BRACHMAN R W I, TAKE W A, et al. Large-scale quantification of wrinkles in a smooth black HDPE geomembrane[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(6): 671-679. doi: 10.1061/(ASCE)GT.1943-5606.0000643
[32] ROWE R K, CHAPPEL M J, BRACHMAN R W I, et al. Field study of wrinkles in a geomembrane at a composite liner test site[J]. Canadian Geotechnical Journal, 2012, 49(10): 1196-1211. doi: 10.1139/t2012-083
[33] 徐亚, 能昌信, 刘玉强, 等. 垃圾填埋场HDPE膜漏洞密度及其影响因素的统计分析[J]. 环境工程学报, 2015, 9(9): 4558-4564. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201509076.htm XU Ya, NAI Changxin, LIU Yuqiang, et al. Statistical analysis on density of accidental-hole in landfill liner system[J]. Chinese Journal of Environmental Engineering, 2015, 9(9): 4558-4564. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201509076.htm
-
期刊类型引用(34)
1. 肖瑶,邓华锋,李建林,熊雨,程雷. 利用Triton X-100提升巴氏芽孢杆菌脲酶活性的效果. 材料导报. 2024(01): 209-215 . 百度学术
2. 熊雨,肖瑶,邓华锋,李建林,黄叶宁,朱文羲. 海水环境下混凝土裂缝微生物改性修复研究. 应用基础与工程科学学报. 2024(01): 160-177 . 百度学术
3. 谢永晟,杨果岳,王阳,杨少光. 剪切速率对水泥胶结钙质砂强度及变形的影响. 湘潭大学学报(自然科学版). 2024(01): 83-91 . 百度学术
4. 王双娇,李志清,田怡帆,李燕明,周应新,李丹丹. 微生物岩土工程技术的过去、现在与未来. 工程地质学报. 2024(01): 236-264 . 百度学术
5. 张永杰,欧阳健,黄万东,刘涛,朱剑锋,陈剑华. 胶结液浓度对微生物固化花岗岩残积土强度特性的影响规律. 湖南大学学报(自然科学版). 2024(03): 121-129 . 百度学术
6. 陈洪运,张尧,温琪. 微生物矿化加固砂土的试验研究. 河北建筑工程学院学报. 2024(01): 8-13 . 百度学术
7. 徐洪钟,王沐婉,沐红元,米健,吴永红. 微生物诱导碳酸钙沉积加固剧烈砂化白云岩实验研究. 清华大学学报(自然科学版). 2024(07): 1168-1178 . 百度学术
8. Yingxin Zhou,Zhiqing Li,Peng Zhang,Qi Wang,Weilin Pan,Shuangjiao Wang,Xiongyao Xie. Research status, hot spots, difficulties and future development direction of microbial geoengineering. Journal of Road Engineering. 2024(02): 234-255 . 必应学术
9. 王延宁,黄龙剑,陈前,俞缙,刘士雨. MICP加固花岗岩残积土的渗透特性. 土木与环境工程学报(中英文). 2024(05): 38-46 . 百度学术
10. 林文彬,王彬,高玉朋,柯劲涛,曹生根,孔秋平. 海水环境下微生物诱导碳酸钙沉淀胶结散体状强风化花岗岩崩解试验研究. 工业建筑. 2024(09): 1-9 . 百度学术
11. 林文彬,高玉朋,罗承浩,林威,郭琼玲. 天然海水环境MICP固化硅质海砂模型试验研究. 地下空间与工程学报. 2024(06): 1960-1968+2009 . 百度学术
12. 谭慧明,赵祥运,徐烨. 豆皮脲酶诱导碳酸盐沉淀固化砂土抗风蚀性能试验研究. 防灾减灾工程学报. 2024(06): 1408-1417+1427 . 百度学术
13. 李雨杰,国振,李艺隆,芮圣洁,朱永强. 岛礁工程MICP加固技术研究进展. 工程科学学报. 2023(05): 819-832 . 百度学术
14. 王延宁,黄龙剑,李思侃,吴鸣. 一种估算MICP加固砂土体渗透系数的简便方法. 汕头大学学报(自然科学版). 2023(01): 3-12+2 . 百度学术
15. 汤佳辉,彭劼,许鹏旭,卫仁杰,李亮亮. MICP加固钙质砂的耐久性试验研究. 河北工程大学学报(自然科学版). 2023(01): 29-34 . 百度学术
16. 章君政,唐朝生,周启友,吕超,泮晓华,施斌. 基于ERT技术的微生物矿化固砂过程监测研究. 防灾减灾工程学报. 2023(02): 351-358 . 百度学术
17. 艾峰全. 不同制备工艺下微生物水泥固结不同砂质效果分析. 人民长江. 2023(06): 194-199 . 百度学术
18. 陈垚,王重卿,江世雄,罗立津,李熙,陈鸿,郑军荣,贾纬. 微生物矿化对塔基弃土的固结作用及抗降雨侵蚀效果. 科学技术与工程. 2023(34): 14713-14720 . 百度学术
19. 郑思维,胡明鉴,霍玉龙,黎宇. 盐溶液环境下钙质砂渗透性影响因素分析. 岩土力学. 2023(12): 3522-3530 . 百度学术
20. 耿闻继,陈爱青,闻艺杰,许怀华,薛润泽,朱瑞莹,韩培培. 微生物矿化技术在混凝土既有微裂缝修复中的研究进展. 水道港口. 2023(06): 938-948 . 百度学术
21. 刘津江,王淼,樊敏,刘西周. 产脲酶微生物的筛选和应用研究进展. 生物技术. 2022(01): 107-113+119 . 百度学术
22. 肖瑶,邓华锋,李建林,程雷,朱文羲. 海水环境下巴氏芽孢杆菌驯化及钙质砂固化效果研究. 岩土力学. 2022(02): 395-404 . 百度学术
23. 王子玉,喻文晔,齐超楠,赵翔宇. 海水环境下MICP的反应机理与影响因素. 土木与环境工程学报(中英文). 2022(05): 128-135 . 百度学术
24. 许鹏旭,冷勐,彭劼,卫仁杰. 微生物与水泥固化南海珊瑚砂的强度及微观特征对比试验. 科学技术与工程. 2022(16): 6642-6649 . 百度学术
25. 曾召田,梁珍,孙凌云,付慧丽,范理云,潘斌,于海浩. 水泥胶结钙质砂导热系数的影响因素试验研究. 岩土力学. 2022(S1): 88-96 . 百度学术
26. 李艺隆,国振,徐强,李雨杰. 海水环境下MICP胶结钙质砂干湿循环试验研究. 浙江大学学报(工学版). 2022(09): 1740-1749 . 百度学术
27. 许万强,林文彬,罗承浩,姜乃灿,高玉朋,林威,吴文葶. MICP技术研究进展及在海洋岩土工程的应用展望. 福建工程学院学报. 2022(06): 511-519 . 百度学术
28. 刘家明,童华炜,赵寄橦,袁杰. 盐溶液环境下微生物固化技术加固钙质砂的试验研究. 科学技术与工程. 2021(12): 5046-5053 . 百度学术
29. 中国路基工程学术研究综述·2021. 中国公路学报. 2021(03): 1-49 . 百度学术
30. 董博文,刘士雨,俞缙,蔡燕燕,涂兵雄. 靶向激活产脲酶微生物加固钙质砂试验研究. 岩土工程学报. 2021(07): 1315-1321 . 本站查看
31. 曾召田,付慧丽,吕海波,梁珍,于海浩. 水泥胶结钙质砂热传导特性及微观机制. 岩土工程学报. 2021(12): 2330-2338 . 本站查看
32. 唐朝生,泮晓华,吕超,董志浩,刘博,王殿龙,李昊,程瑶佳,施斌. 微生物地质工程技术及其应用. 高校地质学报. 2021(06): 625-654 . 百度学术
33. 周应征,管大为,成亮. 微生物诱导碳酸盐在土体加固中的应用进展. 高校地质学报. 2021(06): 697-706 . 百度学术
34. 曹光辉,刘士雨,俞缙,蔡燕燕,胡洲,毛坤海. 酶诱导碳酸钙沉淀(EICP)技术及其在岩土工程中的应用. 高校地质学报. 2021(06): 754-768 . 百度学术
其他类型引用(18)