• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

疏浚吹填泥沙静态间歇沉降行为及其稳态宏观评价标准

鲍树峰, 董志良, 莫海鸿, 周睿博, 张劲文

鲍树峰, 董志良, 莫海鸿, 周睿博, 张劲文. 疏浚吹填泥沙静态间歇沉降行为及其稳态宏观评价标准[J]. 岩土工程学报, 2024, 46(3): 549-557. DOI: 10.11779/CJGE20221361
引用本文: 鲍树峰, 董志良, 莫海鸿, 周睿博, 张劲文. 疏浚吹填泥沙静态间歇沉降行为及其稳态宏观评价标准[J]. 岩土工程学报, 2024, 46(3): 549-557. DOI: 10.11779/CJGE20221361
BAO Shufeng, DONG Zhiliang, MO Haihong, ZHOU Ruibo, ZHANG Jinwen. Static batch settling behaviors of dredged and filled sediment and its steady-state macroscopic evaluation criteria[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(3): 549-557. DOI: 10.11779/CJGE20221361
Citation: BAO Shufeng, DONG Zhiliang, MO Haihong, ZHOU Ruibo, ZHANG Jinwen. Static batch settling behaviors of dredged and filled sediment and its steady-state macroscopic evaluation criteria[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(3): 549-557. DOI: 10.11779/CJGE20221361

疏浚吹填泥沙静态间歇沉降行为及其稳态宏观评价标准  English Version

基金项目: 

广东省普通高校创新团队项目 2022KCXTD024

广东省重点建设学科科研能力提升项目 2022ZDJS091

详细信息
    作者简介:

    鲍树峰(1982—),男,江西婺源人,博士研究生,正高级工程师、教授,主要从事海洋岩土工程、水利岩土工程、智慧岩土工程等方面的研究工作。E-mail: baoshufeng@gzmtu.edu.cn

    通讯作者:

    张劲文, E-mail: zjw@gzmtu.edu.cn

  • 中图分类号: TU43

Static batch settling behaviors of dredged and filled sediment and its steady-state macroscopic evaluation criteria

  • 摘要: 关于疏浚吹填泥沙的静态间歇沉降行为与机理及其稳态宏观评价标准,目前暂未深入研究。这是当今疏浚吹填泥沙地基采用真空过滤排水固结技术进行处理时无法科学判断最佳启动时间的主要原因之一。鉴于此,先对疏浚吹填泥沙的静态间歇沉降行为进行理论研究,建立了颗粒悬浮液的沉降速度与平均孔隙比的理论关系式。然后,获取典型工程现场的疏浚吹填泥沙,配制典型浓度试样,开展静态间歇沉降模型试验研究。研究结果表明:①黏粒(d<0.005 mm)含量是影响疏浚吹填泥沙静态间歇沉降行为与机理的关键因素之一;②颗粒通量最大值Gmax往往出现在试验难以测出的非常低的浓度条件下,且黏粒含量越高,越难通过试验方式测得;③对于黏粒含量为40%~60%的疏浚吹填泥沙,建议将“平均孔隙比累计变化率为60%~75%”作为静态间歇沉降稳定状态的宏观评价标准。
    Abstract: The static batch settling behaviors and mechanism of dredged and filled sediment and its steady-state macroscopic evaluation criteria have not been studied in depth yet. This is one of the main reasons why the optimal start-up time cannot be scientifically judged when the dredged and filled sediment foundations are treated by the vacuum filtration drainage consolidation technology today. In view of this, a theoretical study on the static batch settling behaviors of the dredged and filled sediment is conducted, and the theoretical relationship between the settling velocity of particle suspension and the average pore ratio is established. Based on the dredged and filled sediment from typical engineering sites and the configured typical concentration specimens, the experimental researches on the static batch settling model are carried out. The results indicate that: (1) The content of clay particles (d < 0.005 mm) is one of key factors affecting the static batch settling behaviors and mechanism of the dredged and filled sediment. (2) The maximum particle flux Gmax often occurs at very low concentrations that are difficult to measure experimentally. The higher the viscous content, the more difficult it is to measure experimentally the maximum particle flux during static batch settlement. (3) For the dredged sediment whose clay content is within 40% to 60%, the cumulative change rate of the average porosity ratio of 60% to 75% can be taken as the criterion for evaluating the steady state of its batch settling process.
  • 图  1   静态间歇沉降过程示意图

    Figure  1.   Schematic diagram of static batch settling process

    图  2   间歇沉降过程中颗粒通量的变化

    Figure  2.   Change in particle flux during batch settlement

    图  3   自制沉积筒

    Figure  3.   Self-developed deposition tube

    图  4   高精度微型十字板剪切仪

    Figure  4.   High-precision micro cross plate shearing instrument

    图  5   固液分界面沉降值-沉降时间变化曲线

    Figure  5.   Variation curves of settlement-time of solid-liquid interface

    图  6   颗粒通量-固液分界面高度的变化曲线

    Figure  6.   Variation curves of particle flux-height of solid-liquid interface

    图  7   颗粒通量-固相浓度的变化曲线

    Figure  7.   Variation curves of particle flux-solid phase concentration

    图  8   界面沉降速度-平均孔隙比的变化曲线

    Figure  8.   Variation curves of settling velocity-mean pore ratio of interface

    图  9   不同沉积时间含水率-深度的曲线

    Figure  9.   Moisture content-depth curves at different deposition time

    图  10   不同沉积时间湿密度-深度的曲线

    Figure  10.   Wet density-depth curves at different deposition time

    图  11   不同沉积时间孔隙比-深度的曲线

    Figure  11.   Void ratio-depth curves at different deposition time

    图  12   不同沉积时间原位抗剪强度-深度的曲线

    Figure  12.   In-situ shear strength-depth curves at different deposition time

    图  13   不同沉积时间黏粒含量-深度的曲线

    Figure  13.   Clay content-depth curves at different deposition time

    图  14   固液界面沉降值-平均孔隙比曲线

    Figure  14.   Sedimentation-average pore ratio curves of solid-liquid interface

    图  15   平均含水率-平均孔隙比曲线

    Figure  15.   Average water content-average void ratio curves

    图  16   平均湿密度-平均孔隙比曲线

    Figure  16.   Average wet density-average void ratio curves

    图  17   不同条件下平均孔隙比累计变化率-沉积时间曲线

    Figure  17.   Cumulative change rate of average void ratio-deposition time curve under different conditions

    表  1   配制试样的基本物理指标

    Table  1   Basic physical indices for preparation of specimens

    试样 物理性质 界限含水率 颗粒组成/%
    颗粒比重Gs 含水率/% 液限wL/% 塑限
    wP/%
    塑性指数IP 砾粒
    (角砾)
    >2.00 mm
    粗砂
    2.00~0.50 mm
    中砂
    0.50~0.25 mm
    细砂
    0.25~0.075 mm
    粉粒
    0.075~
    0.005 mm
    黏粒

    0.005 mm
    Ⅰ组-南沙 2.712 380 50.8 24.4 26.4 0.00 0.00 1.45 20.75 37.10 40.70
    Ⅱ组-惠州 2.703 548 56.9 40.6 30.3 0.00 0.00 1.25 0.90 36.95 60.90
    下载: 导出CSV

    表  2   不同条件下平均孔隙比累计变化率统计值

    Table  2   Statistical values of cumulative change rate of average void ratio under different conditions

    试样名称 黏粒含量/%
    d<0.005 mm
    沉积环境 沉积筒直径 初始含水率/% 初始密度
    /(g·cm-3)
    沉积时间
    /d
    初始孔隙比 沉积稳定时孔隙比 平均孔隙比累计变化率/%
    南水北调东线—淮安四站 53.4 淡水+海水 3.1 cm 424.0 1.140 30 11.53 3.51 69.6
    53.4 淡水+海水 3.1 cm 530.0 1.110 30 14.42 3.53 75.5
    南水北调东线—白马湖 47.0 海水 3.2 cm 380.0 1.149 80 10.07 5.992 40.5
    47.0 淡水+海水 3.2 cm 570.0 1.102 80 15.105 6.548 56.7
    47.0 淡水+海水 3.2 cm 760.0 1.078 80 20.14 6.599 67.2
    47.0 淡水+海水 3.2 cm 950.0 1.063 80 25.175 6.678 73.5
    47.0 海水 4.3 cm 369.5 1.150 21 10.1 6.1 39.6
    47.0 海水 5.3 cm 369.5 1.150 21 10.1 5.7 43.6
    47.0 海水 6.0 cm 369.5 1.150 21 10.1 5.7 43.6
    天津滨海新区 47.0 海水 高2 m
    直径80 cm
    400.0 1.120 366 11.6 3.2 72.4
    I组南沙试样 40.7 海水 高1.3 m
    直径33.4 cm
    380.0 1.150 240 10.311 2.714 73.7
    II组惠州试样 60.9 海水 高1.3 m
    直径33.4 cm
    547.0 1.115 240 14.667 5.331 63.7
    下载: 导出CSV
  • [1]

    GORO IMAI. Experiment studies on sedimentation mechanism and sediment formation of clay materials[J]. Soils and Foundations, 1981, 21(1): 7-20. doi: 10.3208/sandf1972.21.7

    [2] 朱伟, 闵凡路, 吕一彦, 等. "泥科学与应用技术"的提出及研究进展[J]. 岩土力学, 2013, 34(11): 3041-3054. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201311001.htm

    ZHU Wei, MIN Fanlu, LÜ Yiyan, et al. Subject of "mud science and application technology"and its research progress[J]. Rock and Soil Mechanics, 2013, 34(11): 3041-3054. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201311001.htm

    [3] 鲍树峰. 新近吹填淤泥地基真空固结理论与强度增长计算方法及加固新技术研究[D]. 广州: 华南理工大学, 2015.

    BAO Shufeng. Vacuum Consolidation Theory and Calculation Method of Soil Strength Growth and New Improvement Technology for Newly Hydraulic Reclamation Mud Foundation[D]. Guangzhou: Chinese Doctoral Dissertations Full-text Database, 2015. (in Chinese)

    [4] 蔡袁强. 吹填淤泥真空预压固结机理与排水体防淤堵处理技术[J]. 岩土工程学报, 2021, 43(2): 201-225, I0003. doi: 10.11779/CJGE202102001

    CAI Yuanqiang. Consolidation mechanism of vacuum preloading for dredged slurry and anti-clogging method for drains[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(2): 201-225, I0003. (in Chinese) doi: 10.11779/CJGE202102001

    [5] 鲍树峰, 董志良, 娄炎, 等. 高黏粒含量新近吹填淤泥加固新技术室内研发Ⅱ[J]. 浙江大学学报(工学版), 2015(9): 1707-1715. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201509013.htm

    BAO Shufeng, DONG Zhiliang, LOU Yan, et al. Laboratory research on new improvement technology of newly hydraulic reclamation mud with high clay content Ⅱ[J]. Journal of Zhejiang University (Engineering Science), 2015(9): 1707-1715. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201509013.htm

    [6] 曹玉鹏, 吉锋. 吹填淤泥沉积规律室内试验[J]. 水利水电科技进展, 2011, 31(3): 36-39. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSD201103013.htm

    CAO Yupeng, JI Feng. Model tests on sedimentation behavior of dredged sludge[J]. Advances in Science and Technology of Water Resources, 2011, 31(3): 36-39. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLSD201103013.htm

    [7] 翁佳兴. 吹填淤泥自重沉积规律试验研究[J]. 土木工程与管理学报, 2012, 29(3): 81-85. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCJ201203018.htm

    WENG Jiaxing. Experimental study on sedimentation behavior of dredged sludge[J]. Journal of Civil Engineering and Management, 2012, 29(3): 81-85. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WHCJ201203018.htm

    [8] 徐桂中, 吉锋, 翁佳兴. 高含水率吹填淤泥自然沉降规律[J]. 土木工程与管理学报, 2012, 29(3): 22-27. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCJ201203006.htm

    XU Guizhong, JI Feng, WENG Jiaxing. Sedimentation behavior of dredged slurry at high water contents[J]. Journal of Civil Engineering and Management, 2012, 29(3): 22-27. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WHCJ201203006.htm

    [9] 别学清, 戴民忠, 管图林, 等. 海水环境下高含水率疏浚淤泥自然沉积规律研究[J]. 科学技术与工程, 2015, 15(4): 273-277. doi: 10.3969/j.issn.1671-1815.2015.04.055

    BIE Xueqing, DAI Minzhong, GUAN Tulin, et al. The sedimentation behavior of dredged slurries in seawater environment[J]. Science Technology and Engineering, 2015, 15(4): 273-277. (in Chinese) doi: 10.3969/j.issn.1671-1815.2015.04.055

    [10] 张莹, 徐桂中, 卢亮, 等. 吹填层厚度对疏浚淤泥沉积特性影响的试验研究[J]. 水运工程, 2020(11): 57-62. https://www.cnki.com.cn/Article/CJFDTOTAL-SYGC202011010.htm

    ZHANG Ying, XU Guizhong, LU Liang, et al. Experimental study on effect of hydraulic fill thickness on sedimentation characteristic of dredged slurry[J]. Port & Waterway Engineering, 2020(11): 57-62. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYGC202011010.htm

    [11] 宋苗苗, 王正宏, 徐桂中, 等. 钙质絮凝剂对高含水率吹填淤泥自重沉积特性的影响[J]. 水利水电科技进展, 2021, 41(5): 22-27. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSD202105005.htm

    SONG Miaomiao, WANG Zhenghong, XU Guizhong, et al. Effects of calcareous flocculants on self-weight sedimentation characteristics of dredged slurry with high water content[J]. Advances in Science and Technology of Water Resources, 2021, 41(5): 22-27. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLSD202105005.htm

    [12]

    WATABE Y, SAITOH K. Importance of sedimentation process for formation of microfabric in clay deposit[J]. Soils and Foundations, 2015, 55(2): 276-283.

    [13]

    QIN J, ZHENG J, LI L. An analytical solution to estimate the settlement of tailings or backfill slurry by considering the sedimentation and consolidation[J]. International Journal of Mining Science and Technology, 2021, 31: 463-471.

    [14]

    FANG Y G, LIU H, GUO L F, et al. Calculation theory and experiment verification of sedimentation potential of the complex particle system[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022(649): 129447.

    [15]

    KYNC G J. A theory of sedimentation[J]. Transactions of the Faraday Society, 1952(48): 166-177.

    [16]

    RICHARDSON J F, ZAKI W N. Sedimentation and fluidisation: PART I[J]. Institution of Chemical Engineers, 1954(32): 35-53.

    [17] 杨爱武, 杜东菊, 卢力强. 天津吹填软土沉积特性及其微观结构研究[J]. 水文地质工程地质, 2010, 37(5): 83-87. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201005018.htm

    YANG Aiwu, DU Dongju, LU Liqiang. Study on sediment characteristics and micro-structure of soft dredger soil of Tianjin[J]. Hydrogeology and Engineering Geology, 2010, 37(5): 83-87. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201005018.htm

  • 期刊类型引用(3)

    1. 鲍树峰,董志良,莫海鸿,张劲文,江学良,刘攀,罗晓晓. 浮泥-流泥路基中防淤堵排水板排水行为. 中国公路学报. 2024(06): 228-239 . 百度学术
    2. 赵健,麦研,付亚磊,罗小峰,刘星璐. 小尺度吹填区泥沙分选特性量化研究. 中国港湾建设. 2024(12): 67-74 . 百度学术
    3. 赵健,麦研,付亚磊,罗小峰,刘星璐. 小尺度吹填区泥沙分选特性量化研究. 中国港湾建设. 2024(12): 67-74 . 百度学术

    其他类型引用(0)

图(17)  /  表(2)
计量
  • 文章访问数:  489
  • HTML全文浏览量:  44
  • PDF下载量:  89
  • 被引次数: 3
出版历程
  • 收稿日期:  2022-11-03
  • 网络出版日期:  2024-03-14
  • 刊出日期:  2024-02-29

目录

    /

    返回文章
    返回