• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于二氧化碳泡沫水泥浆的淤泥固化研究

丰土根, 厉治平, 张箭, 谢康

丰土根, 厉治平, 张箭, 谢康. 基于二氧化碳泡沫水泥浆的淤泥固化研究[J]. 岩土工程学报, 2024, 46(12): 2538-2547. DOI: 10.11779/CJGE20230869
引用本文: 丰土根, 厉治平, 张箭, 谢康. 基于二氧化碳泡沫水泥浆的淤泥固化研究[J]. 岩土工程学报, 2024, 46(12): 2538-2547. DOI: 10.11779/CJGE20230869
FENG Tugen, LI Zhiping, ZHANG Jian, XIE Kang. Sludge solidification based on carbon dioxide foam cement slurry[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(12): 2538-2547. DOI: 10.11779/CJGE20230869
Citation: FENG Tugen, LI Zhiping, ZHANG Jian, XIE Kang. Sludge solidification based on carbon dioxide foam cement slurry[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(12): 2538-2547. DOI: 10.11779/CJGE20230869

基于二氧化碳泡沫水泥浆的淤泥固化研究  English Version

详细信息
    作者简介:

    丰土根(1975—),男,博士,教授,主要从事隧道与地下工程方面的研究。E-mail: fengtugen@hhu.edu.cn

    通讯作者:

    张箭, E-mail: zhongj0507@163.com

  • 中图分类号: TU43

Sludge solidification based on carbon dioxide foam cement slurry

  • 摘要: 河湖疏浚会产生大量疏浚淤泥,其含水率、压缩性均较高。采用二氧化碳作为泡沫气体源制备二氧化碳泡沫水泥浆材料并以此作为固化材料开展淤泥改良,对疏浚淤泥的资源再利用及对实现碳中和目标具有重要的意义。基于传统空气泡沫水泥浆制备技术与普通水泥基固碳机理,采用二氧化碳替代空气制备二氧化碳泡沫水泥浆并以此进行淤泥固化,对泡沫浆液养护后形成结石体试块的力学性能以及疏浚淤泥固化后形成填料的力学性能和微观结构进行了试验研究。研究结果表明:发泡剂A2和稳泡剂C1的最佳组合为4,5 g/L;水泥水化水解产物中Ca(OH)2与CO2生成CaCO3的转化率约增加26.1;水泥浆中粉煤灰的最佳掺量为30%;固化后形成的固化料的无侧限抗压强度、内摩擦角及黏聚力与泡沫浆液的掺量呈近似线性递增关系,而渗透系数与泡沫浆液的掺量呈近似线性递减关系。研究成果为淤泥固化的工程应用和二氧化碳“变废为宝”的途径提供重要指导。
    Abstract: River and lake dredging will produce a large amount of dredged sludge with high water content and compressibility. Using the carbon dioxide as the foam gas source to prepare carbon dioxide foam cement slurry and use it as the solidification material to carry out sludge improvement is of great significance to the reuse of dredged sludge resources and to achieve the goal of carbon neutrality. Based on the traditional air foam cement slurry preparation technology and ordinary cement-based carbon fixation mechanism, the carbon dioxide foam cement slurry is prepared with carbon dioxide instead of air, which is used to solidify the sludge. The mechanical properties of stone test blocks formed after the curing of foam slurry and the mechanical properties and microstructure of filler formed after the solidification of dredged sludge are studied experimentally. The results show that the best combination of foaming agent and foam stabilizer is A2 4g/L, C1 5g/L. The conversion rate of Ca (OH)2 and CO2 to CaCO3 in the cement hydration hydrolysis product increases by about 26.1%. The optimal content of fly ash in cement slurry is 30%. The unconfined compressive strength, internal friction angle and cohesion of the solidified materials formed after curing approximately linearly increase with the content of foam slurry, while the permeability coefficient approximately linearly decreases with the content of foam slurry. The research results provide important guidance for the engineering application of sludge solidification and the way to "turn waste into treasure" of carbon dioxide.
  • 图  1   二氧化碳水基泡沫发泡机结构图

    Figure  1.   Structural map of CO2 foaming machine

    图  2   试样抗折强度

    Figure  2.   Flexural strengths of specimens

    图  3   试样抗压强度

    Figure  3.   Compressive strengths of specimens

    图  4   水灰比与密度、抗压强度变化百分比的关系

    Figure  4.   Relationship between water-cement ratio and change percentages of density and compressive strength

    图  5   浆泡比与密度、抗压强度变化百分比的关系

    Figure  5.   Relationship between slurry-bubble ratio and change percentage of, density and compressive strength

    图  6   泡沫浆液密度与粉煤灰掺量的关系

    Figure  6.   Variation of density of foam slurry with content of fly ash

    图  7   泡沫浆液抗压强度与粉煤灰掺量的关系

    Figure  7.   Variation of compressive strength of foam slurry with content of fly ash

    图  8   固化料无侧限抗压强度与浆液掺量的关系

    Figure  8.   Curves of unconfined compressive strength and slurry content of solidified materials

    图  9   泡沫水泥浆液掺量与内摩擦角曲线

    Figure  9.   Curves of foam cement slurry dosage and internal friction angle

    图  10   泡沫水泥浆液掺量与黏聚力曲线

    Figure  10.   Curves of foam cement slurry dosage and cohesion

    图  11   对比试验密度分析

    Figure  11.   Density analysis of comparative tests

    图  12   对比试验无侧限抗压强度分析

    Figure  12.   Analysis of unconfined compressive strength in comparative tests

    图  13   对比试验黏聚力分析

    Figure  13.   Cohesion analysis of comparative test

    图  14   水泥基泡沫浆液固化淤泥微观结构光学成像图

    Figure  14.   Optical image of microstructure of cement-based foam slurry-solidified sludge

    图  15   水泥基泡沫浆液固化淤泥X射线衍射图谱

    Figure  15.   X-ray diffraction patterns of cement-based foam slurry- solidified sludge

    表  1   淤泥基本物理性质参数

    Table  1   Basic physical property parameters of sludge

    含水率/% 湿密度/
    (g·cm-3)
    干密度/
    (g·cm-3)
    相对质量密度
    63.26 1.69 1.03 2.70
    下载: 导出CSV

    表  2   普通硅酸盐水泥性能测试结果

    Table  2   Performance test results of ordinary portland cement

    比表面积/
    (m2·kg-1)
    初凝/ min 终凝/ min 抗折强度/MPa 抗压强度/MPa
    3 d 28 d 3 d 28 d
    357 203 250 5.9 7.7 27.4 45.0
    下载: 导出CSV

    表  3   马鞍山海螺牌普通硅酸盐42.5水泥主要化学组分及含量

    Table  3   Main chemical components and content of Ma'anshan Hailuo ordinary portland 42.5 cement  单位: %

    SiO2 Al2O3 Fe2O3 SO3 CaO MgO
    22.55 5.91 2.63 2.01 63.22 2.68
    下载: 导出CSV

    表  4   L9(34)水平及因素信息表

    Table  4   Information of orthogonal tests

    序号 发泡剂(A) 发浓度(B) 稳泡剂(C) 稳浓度(D)
    1 A1 2 g/L(B1) C1 3 g/L(D1)
    2 A2 4 g/L(B2) C2 5 g/L(D2)
    3 A3 6 g/L(B3) C3 7 g/L(D3)
    下载: 导出CSV

    表  5   L9(34)正交试验结果

    Table  5   Results of orthogonal tests

    组号 发泡剂种类 发泡剂浓度 稳泡剂种类 稳泡剂浓度 结石率/% 密度/(g·cm-3) 7 d抗压强度/MPa 稳泡时间/min
    1(A1) 1(B1) 1(C1) 1(D1) 0.98 1.38 3.33 24.2
    1(A1) 2(B2) 2(C2) 2(D2) 0.97 1.41 4.50 52.4
    1(A1) 3(B3) 3(C3) 3(D3) 0.99 1.44 4.62 33.8
    2(A2) 1(B1) 2(C2) 3(D3) 0.96 1.31 5.62 41.1
    2(A2) 2(B2) 3(C3) 1(D1) 0.96 1.52 4.28 55.6
    2(A2) 3(B3) 1(C1) 2(D2) 0.93 1.41 4.51 37.2
    3(A3) 1(B1) 3(C3) 2(D2) 0.96 1.49 4.69 38.4
    3(A3) 2(B2) 1(C1) 3(D3) 0.99 1.54 4.42 42.9
    3(A3) 3(B3) 2(C2) 1(D1) 0.99 1.32 4.46 29.6
    下载: 导出CSV

    表  6   各水平数据平均值与极差

    Table  6   Averages and ranges of data at all levels

    平均水平与极差 7 d强度/
    MPa
    密度/
    (g·cm-3)
    结石率 稳泡时间/
    min
    A $ \overline {{K_{\text{1}}}} $ 4.05 1.41 0.98 36.80
    $ \overline {{K_2}} $ 4.97 1.41 0.96 41.30
    $ \overline {{K_{\text{3}}}} $ 4.52 1.45 0.98 36.97
    R 0.92 0.04 0.02 4.50
    B $ \overline {{K_{\text{1}}}} $ 4.55 1.39 0.97 34.57
    $ \overline {{K_2}} $ 4.40 1.49 0.97 50.30
    $ \overline {{K_{\text{3}}}} $ 4.53 1.39 0.97 33.53
    R 0.15 0.10 0 16.77
    C $ \overline {{K_{\text{1}}}} $ 4.09 1.34 0.97 34.77
    $ \overline {{K_2}} $ 4.86 1.35 0.98 41.03
    $ \overline {{K_{\text{3}}}} $ 4.53 1.48 0.97 42.60
    R 0.77 0.14 0.01 7.83
    D $ \overline {{K_{\text{1}}}} $ 4.02 1.44 0.97 36.46
    $ \overline {{K_2}} $ 4.57 1.44 0.95 42.67
    $ \overline {{K_{\text{3}}}} $ 4.89 1.43 0.98 39.27
    R 0.87 0.01 0.03 6.21
    下载: 导出CSV

    表  7   泡浆比与水灰比全面试验组别示意图

    Table  7   Schematic diagram of comprehensive test groups

    泡浆比 水灰比
    1︰2.2 1︰2.4 1︰2.6 1︰2.8
    3︰1 1 4 7 10
    5︰1 2 5 8 11
    7︰1 3 6 9 12
    下载: 导出CSV

    表  8   水泥基泡沫浆液固化淤泥试样中物相检索物质主要组成和百分含量

    Table  8   Main compositions and percentage contents of phase retrieved substances in cement-based foam slurry cured silt sample  单位: %

    组分 CaSiO3 CaCO3 CaAl2O4 Ca(OH)2
    百分含量 32.65 30.27 13.07 10.04
    下载: 导出CSV

    表  9   普通水泥浆固化淤泥试样中物相检索物质组成和百分含量

    Table  9   Compositions and percentage content of phase retrievable substances in common cement slurry cured silt sample  单位:%

    组分 CaSiO3 CaCO3 CaAl2O4 Ca(OH)2
    百分含量 38.18 24.63 14.92 14.61
    下载: 导出CSV

    表  10   泡沫水泥浆液淤泥固化料各组分掺量

    Table  10   Dosages of each component of foam cement slurry sludge solidification materials

    成分 用量/% 价格/(元·m-3)
    茶皂素 0.73 441
    SDBS 0.95 896
    42.5水泥 23.52 720
    粉煤灰 30.00 107
    淤泥 35.00 110
    9.80 0
    下载: 导出CSV

    表  11   普通水泥浆液淤泥固化料各组分掺量

    Table  11   Dosages of each component of cement slurry sludge solidification materials

    成分 用量/% 价格/(元·m-3)
    42.5水泥 48 720
    淤泥 32 110
    20 0
    下载: 导出CSV
  • [1] 王东星, 徐卫亚. 固化淤泥长期强度和变形特性试验研究[J]. 中南大学学报(自然科学版), 2013, 44(1): 332-339.

    WANG Dongxing, XU Weiya. Experimental study on long-term strength and deformation properties of solidified sediments[J]. Journal of Central South University (Science and Technology), 2013, 44(1): 332-339. (in Chinese)

    [2] 丁建文, 张帅, 洪振舜, 等. 水泥-磷石膏双掺固化处理高含水率疏浚淤泥试验研究[J]. 岩土力学, 2010, 31(9): 2817-2822. doi: 10.3969/j.issn.1000-7598.2010.09.021

    DING Jianwen, ZHANG Shuai, HONG Zhenshun, et al. Experimental study of solidification of dredged clays with high water content by adding cement and phosphogypsum synchronously[J]. Rock and Soil Mechanics, 2010, 31(9): 2817-2822. (in Chinese) doi: 10.3969/j.issn.1000-7598.2010.09.021

    [3] 章荣军, 董超强, 郑俊杰, 等. 絮凝剂和缓凝剂对水泥固化疏浚淤泥浆效率的影响研究[J]. 岩土工程学报, 2019, 41(10): 1928-1935. doi: 10.11779/CJGE201910018

    ZHANG Rongjun, DONG Chaoqiang, ZHENG Junjie, et al. Influences of flocculant and retarder on solidification efficiency of cement in treatment of dredged mud slurry[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(10): 1928-1935. (in Chinese) doi: 10.11779/CJGE201910018

    [4] 王协群, 刘宁, 李智奇, 等. 干湿循环作用下氯氧镁水泥基多相胶凝材料改性固化淤泥的水力-力学特性[J]. 岩土工程学报, 2023, 45(10): 2004-2013. doi: 10.11779/CJGE20220846

    WANG Xiequn, LIU Ning, LI Zhiqi, et al. Hydro-mechanical properties of sludge stabilized with magnesium oxychloride cement-based multi-cementitious materials under influences of drying-wetting cycles[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(10): 2004-2013. (in Chinese) doi: 10.11779/CJGE20220846

    [5] 乔京生, 王旭影, 王冠泓, 等. 粒化高炉矿渣微粉固化淤泥质土的动力特性及微观机理[J]. 硅酸盐通报, 2021, 40(7): 2306-2312.

    QIAO Jingsheng, WANG Xuying, WANG Guanhong, et al. Dynamic characteristics and microscopic mechanism of muddy clay solidified by ground granulated blast-furnace slag[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(7): 2306-2312. (in Chinese)

    [6] 吴俊, 征西遥, 杨爱武, 等. 矿渣-粉煤灰基地质聚合物固化淤泥质黏土的抗压强度试验研究[J]. 岩土力学, 2021, 42(3): 647-655.

    WU Jun, ZHENG Xiyao, YANG Aiwu, et al. Experimental study on the compressive strength of muddy clay solidified by the one-part slag-fly ash based geopolymer[J]. Rock and Soil Mechanics, 2021, 42(3): 647-655. (in Chinese)

    [7] 邓琪丰, 刘卫东, 韩云婷. 发泡剂对淤泥固化性能的影响研究[J]. 新型建筑材料, 2022, 49(7): 138-143.

    DENG Qifeng, LIU Weidong, HAN Yunting. Study on the effect of foaming agent on the solidification performance of silt[J]. New Building Materials, 2022, 49(7): 138-143. (in Chinese)

    [8]

    JONES M, MCCARTHY A. Utilising unprocessed low-lime coal fly ash in foamed concrete[J]. Fuel, 2005, 84(11): 1398-1409. doi: 10.1016/j.fuel.2004.09.030

    [9]

    JITCHAIYAPHUM K, SINSIRI T, CHINDAPRASIRT P. Cellular lightweight concrete containing pozzolan materials[J]. Procedia Engineering, 2011, 14: 1157-1164. doi: 10.1016/j.proeng.2011.07.145

    [10]

    KEARSLEY E P, WAINWRIGHT P J. Porosity and permeability of foamed concrete[J]. Cement and Concrete Research, 2001, 31(5): 805-812. doi: 10.1016/S0008-8846(01)00490-2

    [11]

    GOUAL M S, BALI A, DE BARQUIN F, et al. Isothermal moisture properties of clayey cellular concretes elaborated from clayey waste, cement and aluminium powder[J]. Cement and Concrete Research, 2006, 36(9): 1768-1776. doi: 10.1016/j.cemconres.2005.12.017

    [12] 胡焕校, 罗玮, 唐良智, 等. 轻质泡沫水泥注浆材料的应用研究[J]. 中南林业科技大学学报, 2011, 31(2): 82-85.

    HU Huanxiao, LUO Wei, TANG Liangzhi, et al. The application research of lightweight foam cement in the grouting materials[J]. Journal of Central South University of Forestry & Technology, 2011, 31(2): 82-85. (in Chinese)

    [13] 蔡光华, 刘松玉, 张正甫, 等. 二氧化碳泡沫法碳化加固软弱土的初探研究[J]. 地下空间与工程学报, 2015, 11(增刊1): 34-38.

    CAI Guanghua, LIU Songyu, ZHANG Zhengfu, et al. Preliminary study on carbonation of soft soil by carbon dioxide foam method[J]. Chinese Journal of Underground Space and Engineering, 2015, 11(S1): 34-38. (in Chinese)

    [14]

    NEVES A Jr, TOLEDO FILHO R D, DE MORAES REGO FAIRBAIRN E, et al. The effects of the early carbonation curing on the mechanical and porosity properties of high initial strength Portland cement pastes[J]. Construction and Building Materials, 2015, 77: 448-454. doi: 10.1016/j.conbuildmat.2014.12.072

    [15]

    ZHA X, WANG H, FENG G. The experimental research on the influence of silica fume on the property of cement-based materials[J]. Journal of Hebei Institute of Architecture and Civil Engineering, 2012: 514-518.

    [16] 通用硅酸盐水泥: GB 175—2023[S]. 北京: 中国标准出版社, 2023.

    Common Portland Cement: GB 175—2023[S]. Beijing: Standards Press of China, 2023. (in Chinese)

    [17] 用于水泥和混凝土中的粉煤灰: GB/T 1596—2017[S]. 北京: 中国标准出版社, 2023.

    Fly Ash Used for Cement and Concrete: GB/T 1596—2017[S]. Beijing: Standards Press of China, 2017. (in Chinese)

    [18] 公路路基设计规范: JTG D30—2004[S]. 北京: 人民交通出版社, 2004.

    Specifications for Design of Highway Subgrades: JTG D30—2004[S]. Beijing: China Communications Press, 2004. (in Chinese)

图(15)  /  表(11)
计量
  • 文章访问数:  365
  • HTML全文浏览量:  44
  • PDF下载量:  116
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-07
  • 网络出版日期:  2024-05-10
  • 刊出日期:  2024-11-30

目录

    /

    返回文章
    返回