• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

含水率影响下黄土盾构隧道壁后注浆浆液扩散特性试验研究

叶飞, 李思翰, 夏天晗, 张才飞, 韩兴博

叶飞, 李思翰, 夏天晗, 张才飞, 韩兴博. 含水率影响下黄土盾构隧道壁后注浆浆液扩散特性试验研究[J]. 岩土工程学报, 2024, 46(10): 2051-2059. DOI: 10.11779/CJGE20230380
引用本文: 叶飞, 李思翰, 夏天晗, 张才飞, 韩兴博. 含水率影响下黄土盾构隧道壁后注浆浆液扩散特性试验研究[J]. 岩土工程学报, 2024, 46(10): 2051-2059. DOI: 10.11779/CJGE20230380
YE Fei, LI Sihan, XIA Tianhan, ZHANG Caifei, HAN Xingbo. Experimental study on diffusion characteristics of backfill grouting in shield tunnels of loess under effects of moisture content[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(10): 2051-2059. DOI: 10.11779/CJGE20230380
Citation: YE Fei, LI Sihan, XIA Tianhan, ZHANG Caifei, HAN Xingbo. Experimental study on diffusion characteristics of backfill grouting in shield tunnels of loess under effects of moisture content[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(10): 2051-2059. DOI: 10.11779/CJGE20230380

含水率影响下黄土盾构隧道壁后注浆浆液扩散特性试验研究  English Version

基金项目: 

国家自然科学基金项目 51878060

国家自然科学基金项目 52108360

中国博士后科学基金项目 2020M683398

详细信息
    作者简介:

    叶飞(1977—),男,博士,教授,主要从事隧道及地下工程方面的研究与教学工作。E-mail: xianyefei@126.com

    通讯作者:

    韩兴博, E-mail: xingbo.han@chd.edu.cn

  • 中图分类号: U455

Experimental study on diffusion characteristics of backfill grouting in shield tunnels of loess under effects of moisture content

  • 摘要: 为了揭示黄土盾构隧道壁后注浆浆液在地层中的扩散形式和规律,考虑盾构隧道盾尾间隙特征,建立含水率、渗流压力、土压力可实时监测以及扩散过程可视的模型试验系统。考虑黄土不同含水率,通过试验研究浆液扩散形式以及注浆过程中的含水率、渗流压力和土压力变化规律。研究结果表明:在相同干密度下,不同含水率对壁后注浆浆液扩散形式影响显著;含水率为10%时,浆液未发生明显扩散,浆-土形成了明显的分界面,仅分界面处的含水率发生显著变化,各分层土体土压力较大;含水率为20%和30%时,浆液扩散范围增大,各分层土体含水率均有变化,土压力和渗流压力出现了阶跃曲线,土体中形成了明显的浆脉。黄土盾构隧道壁后注浆中浆液的扩散形式主要为压密扩散、压滤扩散和劈裂扩散。
    Abstract: To reveal the diffusion form and law of backfill grouting in shield tunnels of loess, considering the characteristics of shield tail, a model test system with real-time monitoring for moisture content, seepage pressure and soil pressure and visualization of diffusion process is established. Considering the different moisture contents of loess, the grout diffusion form and the variation law of moisture content, seepage pressure and soil pressure during grouting process are studied through the model tests. The results show that under the same dry density, different moisture contents have a significant effects on the diffusion form of backfill grouting. When the moisture content is 10%, the grout does not diffuse obviously, and an obvious interface is formed between the grout and soil. Only the moisture content at the interface changes significantly, and the soil pressure of each layer is large. When the moisture content is 20% and 30%, the grout diffusion range increases, the moisture content of each layer of soil changes, the soil pressure and seepage pressure show step curves, and obvious grout veins are formed in the soil. The grout diffusion forms in shield tunnels of loess are mainly compaction diffusion, pressure filtration diffusion and splitting diffusion.
  • 图  1   可视化浆液扩散模型试验系统

    Figure  1.   Visual grout diffusion model test system

    图  2   仪器细节

    Figure  2.   Instrument details

    图  3   自然风干土体制备

    Figure  3.   Preparation of natural air-dried soil

    图  4   饱和土体制备

    Figure  4.   Preparation of saturated soil

    图  5   有机玻璃管表面浆液扩散情况

    Figure  5.   Grout diffusion on surface of organic glass tube

    图  6   横断面浆液扩散情况

    Figure  6.   Grout diffusion of cross section

    图  7   各工况土体含水率变化及12 h+含水率

    Figure  7.   Change of moisture content of soil and 12h + moisture contents under various working conditions

    图  8   各工况渗流压力变化

    Figure  8.   Change of seepage pressure under various working conditions

    图  9   各工况土压力变化

    Figure  9.   Change of soil pressure under various working conditions

    图  10   注浆后产生的土体裂缝

    Figure  10.   Soil cracks generated after grouting

    表  1   现有壁后注浆室内试验方法

    Table  1   Existing indoor test methods for backfill grouting

    试验
    类型
    模型构造 试验目的 特色手段
    整体
    模型
    盾构推进模拟系统、注浆系统、激发及数据采集分析系统[14] 隧道埋深、注浆压力、土层性质影响下浆液扩散形态 采用了透明土技术直观展示浆液扩散形态
    模型箱、推进系统、注浆系统、数据采集系统、数据处理系统[15] 分析同步注浆对管片压力和地层变形的影响 大比例尺开展整体试验
    局部
    模型
    注浆设备、模型管道[16] 研究浆液扩散范围与注浆参数及浆液水灰比之间的联系 分段拼接式构造
    渗透注浆管、手动注浆泵、注浆记录仪、双液混合器[17] 探析注浆压力与地层渗透率及注浆速率之间的变化规律 考虑了双液浆的黏度时变性
    渗透注浆装置、恒压注浆系统、数据采集系统[18] 通过一维注入试验研究地下适配浆液的选取 考虑了盾尾脱空过程的模拟,提出了适配性方法
    试验模型箱、注浆系统、浆液配制系统、测试及数据处理系统[19] 不同级配砂样地层下牛顿流体、宾汉姆流体、幂律流体的浆液扩散过程 考虑了砂样分维数等多因素综合影响
    下载: 导出CSV

    表  2   试验用土参数

    Table  2   Parameters of test soil

    含水率/
    %
    相对质量密度 重度/
    (kN·m-3)
    干重度/
    (kN·m-3)
    孔隙比 饱和度/
    %
    20.70 2.70 15.80 13.10 1.04 53.90
    下载: 导出CSV

    表  3   浆液各组分质量比

    Table  3   Mass ratios of grout components

    工况 水泥 膨润土 粉煤灰
    水泥砂浆 1.00 1.67 0.32 1.00 1.97
    下载: 导出CSV

    表  4   P.O 42.5级水泥技术指标

    Table  4   Technical indexes of P.O 42.5 grade cement

    安定性 凝结时间/min 抗折强度/MPa 抗压强度/MPa
    初凝 终凝 3 d 28 d 3 d 28 d
    合格 198 240 5.6 7.5 26.4 45.2
    下载: 导出CSV

    表  5   各工况浆液注入量和最远扩散距离

    Table  5   Grout injection amounts and farthest diffusion distances under various working conditions

    组别 浆液 土体
    含水率/
    %
    浆液
    注入量/
    L
    浆液注入土体量/
    L
    扩散最远
    距离/
    cm
    浆液土中
    扩散距离/
    cm
    1 水泥砂浆 10 7.1 0.035 12.5 2.5
    2 20 10.8 3.735 58 48
    3 30 11.3 4.235 60 50
    下载: 导出CSV
  • [1] 交通运输部. 2024年7月城市轨道交通运营数据速报[EB/OL]. 2024.08. 06. https://www.mot.gov.cn/fenxigongbao/yunlifenxi/.

    Ministry of Transport of the People's Republic of China. Urban rail transit operation data report in July[EB/OL]. 2024.08. 06. https://www.mot.gov.cn/fenxigongbao/yunlifenxi/ (in Chinese

    [2] 何川, 封坤, 方勇. 盾构法修建地铁隧道的技术现状与展望[J]. 西南交通大学学报, 2015, 50(1): 97-109. doi: 10.3969/j.issn.0258-2724.2015.01.015

    HE Chuan, FENG Kun, FANG Yong. Review and prospects on constructing technologies of metro tunnels using shield tunnelling method[J]. Journal of Southwest Jiaotong University, 2015, 50(1): 97-109. (in Chinese) doi: 10.3969/j.issn.0258-2724.2015.01.015

    [3] 张凤祥, 朱合华, 傅德明. 盾构隧道[M]. 北京: 人民交通出版社, 2004.

    ZHANG Fengxiang, ZHU Hehua, FU Deming. Shield Tunnelling Method[M]. Beijing: China Communications Press, 2004. (in Chinese)

    [4] 苟长飞, 叶飞, 张金龙, 等. 盾构隧道同步注浆充填压力环向分布模型[J]. 岩土工程学报, 2013, 35(3): 590-598.

    GOU Changfei, YE Fei, ZHANG Jinlong, et al. Ring distribution model of filling pressure for shield tunnels under synchronous grouting[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(3): 590-598. (in Chinese)

    [5]

    ZHANG J, LU S D, FENG T G, et al. Research on reuse of silty fine sand in backfill grouting material and optimization of backfill grouting material proportions[J]. Tunnelling and Underground Space Technology, 2022, 130: 104751. doi: 10.1016/j.tust.2022.104751

    [6] 毛家骅. 基于渗滤效应的盾构隧道壁后注浆浆液扩散机理研究[D]. 西安: 长安大学, 2016.

    MAO Jiahua. Study on the Grouts Diffusion Mechanism of Shield Tunnel Back-Filled Grouts Based on Filtration[D]. Xi'an: Chang'an University, 2016. (in Chinese)

    [7] 叶飞, 王斌, 韩鑫, 等. 盾构隧道壁后注浆试验与浆液扩散机理研究进展[J]. 中国公路学报, 2020, 33(12): 92-104. doi: 10.3969/j.issn.1001-7372.2020.12.007

    YE Fei, WANG Bin, HAN Xin, et al. Review of shield tunnel backfill grouting tests and its diffusion mechanism[J]. China Journal of Highway and Transport, 2020, 33(12): 92-104. (in Chinese) doi: 10.3969/j.issn.1001-7372.2020.12.007

    [8]

    SHIRLAW N, RICHARDS D, RAMOND P, et al. Recent experience in automatic tail void grouting with soft ground tunnel boring machines[C]// Proceedings of the ITA-AITES World Tunnel Congress, Singapore, 2004: 22-27.

    [9]

    LAMBE T W. The structure of compacted clays[J]. Journal of the Soil Mechanics and Foundations Division, 1958, 84(2): 1-34.

    [10]

    SEED H B, CHAN C K. Structure and strength characteristics of compacted clays[J]. Journal of the Soil Mechanics and Foundations Division, 1959, 85(5): 87-128. doi: 10.1061/JSFEAQ.0000229

    [11] 李培楠, 石来, 李晓军, 等. 盾构隧道同步注浆纵环向整体扩散理论模型[J]. 同济大学学报(自然科学版), 2020, 48(5): 629-637.

    LI Peinan, SHI Lai, LI Xiaojun, et al. Theoretical model of synchronous grouting longitudinal- circumferential integrated diffusion of shield tunnels[J]. Journal of Tongji University (Natural Science), 2020, 48(5): 629-637. (in Chinese)

    [12] 舒计城. 超大直径盾构双液注浆试验及应用效果[J]. 铁道建筑, 2022, 62(5): 117-122. doi: 10.3969/j.issn.1003-1995.2022.05.25

    SHU Jicheng. Experiment and application effect of double⁃liquid grouting in large⁃diameter shield tunnel[J]. Railway Engineering, 2022, 62(5): 117-122. (in Chinese) doi: 10.3969/j.issn.1003-1995.2022.05.25

    [13] 陈鹏, 王先明, 刘四进, 等. 超大直径盾构隧道同步双液注浆原位试验研究[J]. 隧道建设(中英文), 2023, 43(1): 64-74.

    CHEN Peng, WANG Xianming, LIU Sijin, et al. In-situ experiment on synchronous double-component grouting in super-large-diameter shield tunnel[J]. Tunnel Construction, 2023, 43(1): 64-74. (in Chinese)

    [14] 倪小东, 寇恒绮, 刘雨琨, 等. 基于透明土技术的盾构壁后注浆效果试验研究[J]. 长江科学院院报, 2023, 40(10): 80-87. doi: 10.11988/ckyyb.20220589

    NI Xiaodong, KOU Hengqi, LIU Yukun, et al. Experimental study on slurry diffusion and effect evaluation of shield tunnel backfill grouting based on transparent soil technique[J]. Journal of Yangtze River Scientific Research Institute, 2023, 40(10): 80-87. (in Chinese) doi: 10.11988/ckyyb.20220589

    [15] 金威, 丁文其, 徐前卫, 等. 软弱围岩特大跨度隧道模型试验技术及应用[J]. 现代隧道技术, 2014, 51(5): 99-107.

    JIN Wei, DING Wenqi, XU Qianwei, et al. Model-testing technology for an extra-large span tunnel in soft rock[J]. Modern Tunnelling Technology, 2014, 51(5): 99-107. (in Chinese)

    [16] 张玉. 水泥基注浆材料浆液扩散规律和预测控制试验研究[D]. 北京: 北京交通大学, 2020.

    ZHANG Yu. Experimental Research on Law and Prediction Control of Slurry Diffusion Using Cement–Based Grouting Material[D]. Beijing: Beijing Jiaotong University, 2020. (in Chinese)

    [17] 张连震. 地铁穿越砂层注浆扩散与加固机理及工程应用[D]. 济南: 山东大学, 2017.

    ZHANG Lianzhen. Study on Penetration and Reinforcement Mechanism of Grouting in Sand Layer Disclosed by Subway Tunnel and its Application[D]. Ji'nan: Shandong University, 2017. (in Chinese)

    [18] 叶飞, 夏天晗, 应凯臣, 等. 盾构隧道壁后注浆浆液与地层适配性优选方法[J]. 岩土工程学报, 2022, 44(12): 2225-2233. doi: 10.11779/CJGE202212009

    YE Fei, XIA Tianhan, YING Kaichen, et al. Optimization method for backfill grouting of shield tunnel based on stratum suitability characteristics[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(12): 2225-2233. (in Chinese) doi: 10.11779/CJGE202212009

    [19] 蔡德国, 叶飞, 曹凯, 等. 砂性地层盾构隧道壁后注浆浆液扩散室内试验[J]. 中国公路学报, 2018, 31(10): 274-283.

    CAI Deguo, YE Fei, CAO Kai, et al. Test of grout diffusion of shield tunnel backfill grouting in sandy strata[J]. China Journal of Highway and Transport, 2018, 31(10): 274-283. (in Chinese)

    [20] 叶飞, 李思翰, 夏天晗, 等. 低渗地层盾构隧道壁后注浆压密-劈裂扩散模型研究[J]. 岩土工程学报, 2023, 45(10): 2014-2022.

    YE Fei, LI Sihan, XIA Tianhan, et al. Study on pressure-fracture diffusion model of shield tunnel backfill grouting in low permeability stratums[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(10): 2014-2022. (in Chinese)

    [21] 谢定义. 试论我国黄土力学研究中的若干新趋向[J]. 岩土工程学报, 2001, 23(1): 3-13.

    XIE Dingyi. Exploration of some new tendencies in research of loess soil mechanics[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(1): 3-13. (in Chinese)

    [22] 徐张建, 林在贯, 张茂省. 中国黄土与黄土滑坡[J]. 岩石力学与工程学报, 2007(7): 1297-1312.

    XU Zhangjian, LIN Zaiguan, ZHANG Maosheng. Loess in China and loess landslides[J]. Chinese Journal of Rock Mechanics and Engineering, 2007(7): 1297-1312. (in Chinese)

    [23] 李晓龙, 陈灿, 贾赫扬, 等. 考虑化学反应的聚氨酯高聚物浆液膨胀机理试验与数值模拟研究[J]. 铁道科学与工程学报, 2023, 20(11): 4163-4173.

    LI Xiaolong, CHEN Can, JIA Heyang, et al. Expansion mechanism of polymer considering chemical reactions: experiment and numerical simulation[J]. Journal of Railway Science and Engineering, 2023, 20(11): 4163-4173. (in Chinese)

图(10)  /  表(5)
计量
  • 文章访问数:  400
  • HTML全文浏览量:  48
  • PDF下载量:  110
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-03
  • 网络出版日期:  2024-05-10
  • 刊出日期:  2024-09-30

目录

    /

    返回文章
    返回