• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

典型无机絮凝剂对疏浚淤泥絮凝效果及出水水质影响研究

吴敏, 黄英豪, 尹洪斌, 王硕, 陈永, 王文翀

吴敏, 黄英豪, 尹洪斌, 王硕, 陈永, 王文翀. 典型无机絮凝剂对疏浚淤泥絮凝效果及出水水质影响研究[J]. 岩土工程学报, 2023, 45(S1): 79-83. DOI: 10.11779/CJGE2023S10021
引用本文: 吴敏, 黄英豪, 尹洪斌, 王硕, 陈永, 王文翀. 典型无机絮凝剂对疏浚淤泥絮凝效果及出水水质影响研究[J]. 岩土工程学报, 2023, 45(S1): 79-83. DOI: 10.11779/CJGE2023S10021
WU Min, HUANG Yinghao, YIN Hongbin, WANG Shuo, CHEN Yong, WANG Wenchong. Influences of typical inorganic flocculants on flocculation effects of dredging materials and quality of effluent water[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S1): 79-83. DOI: 10.11779/CJGE2023S10021
Citation: WU Min, HUANG Yinghao, YIN Hongbin, WANG Shuo, CHEN Yong, WANG Wenchong. Influences of typical inorganic flocculants on flocculation effects of dredging materials and quality of effluent water[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S1): 79-83. DOI: 10.11779/CJGE2023S10021

典型无机絮凝剂对疏浚淤泥絮凝效果及出水水质影响研究  English Version

基金项目: 

国家自然科学基金项目 51879166

中央级公益性科研院所基本科研业务费项目 Y322002

详细信息
    作者简介:

    吴敏(1999—),女,硕士研究生,主要从事河湖库疏浚底泥处理与资源化利用。E-mail: wm18305193089@163.com

    通讯作者:

    黄英豪, E-mail: yhhuang@nhri.cn

  • 中图分类号: TU43

Influences of typical inorganic flocculants on flocculation effects of dredging materials and quality of effluent water

  • 摘要: 针对淤泥堆场堆填处置中,天然底泥自重落淤固结缓慢等问题,工程中常添加化学药剂来加快泥水分离过程。利用量筒沉积柱试验研究了5种典型无机絮凝剂对高含水率疏浚淤泥的絮凝沉积效果及上覆水水质(浊度值)的影响规律。5种典型的无机絮凝剂中,CaCl2,PAS(聚合硫酸铝)的絮凝效果相对较好。在此基础上,探明了这两种絮凝剂在不同掺量下对疏浚淤泥沉积规律的影响。试验结果表明,CaCl2,PAS掺量不同,泥浆自重沉积固结稳定后沉降量、沉降速率、沉积稳定时间不同,得到CaCl2和PAS的最优掺量分别为0.8%,0.2%。在最优掺量下上覆水的去浊率可达到84%左右。CaCl2通过Ca2+的交换作用和电性中和作用发挥絮凝作用;PAS主要通过土颗粒表面的电性中和作用发挥絮凝作用。结果可为大规模疏浚淤泥的快速絮凝和余水排放研究和设计提供参考借鉴。
    Abstract: In view of the problems such as slow siltation and solidification of natural bottom sludge in the landfill disposal of sludge yards, the chemical agents are often added in the project to speed up the process of sludge-water separation. The influences of five typical inorganic flocculants on the flocculation sedimentation effects of dredged materials with high water content and the quality of overlying water (turbidity) are studied through the measuring cylinder sedimentation tests. Among the five typical inorganic flocculants, CaCl2 and PAS (polyaluminum sulfate) have relatively good flocculation effects. On this basis, the influences of these two flocculants on the sedimentation laws of dredged sludge under different dosages are investigated. The test results show that with different contents of CaCl2 and PAS, the settlement amount, rate and stabilization time of the sludge after self-weight sedimentation and consolidation are different. The optimum contents of CaCl2 and PAS obtained in this study are 0.8% and 0.2%, respectively. Under the optimal dosage, the turbidity removal rate of the overlying water can reach about 84%. CaCl2 plays a role of flocculation through Ca2+ exchange and electrical neutralization; and PAS mainly plays a role of flocculation through electrical neutralization on the surface of soil particles. The results may provide a referencees for the research and design of rapid flocculation and residual water discharge of large-scale dredged materials.
  • 孙建生老师对敝人《稳定安全系数计算公式中荷载与抗力错位影响探讨》[1](以下简称原文)提出了宝贵的指导及讨论意见,非常感谢!

    业界普遍认为边坡稳定安全系数目前主要有两种定义方法:①为抗滑力矩与下滑力矩之比(通常可简化为抗力荷载比),相应的稳定安全系数计算方法一般采用单一安全系数法(原文即采用此法),以瑞典条分法为代表;②定义为滑动面上的抗剪强度与实际产生的剪应力之比,相应的稳定安全系数计算方法一般采用强度(抗剪强度)折减法,以毕肖普法(Bishop)及简布法(Janbu)为代表。宋二祥等[2]倾向于第二种定义。孙文中R÷K=S,对所有抗滑力除以了同一安全系数K、即均进行了折减,从公式表达来看与单一安全系数法没什么不同,与强度折减法仅对岩土体的抗剪强度进行折减明显不同。

    但文献[3]认为“抗滑稳定安全系数K是表达……实际……滑动力S与理论极限(虚拟概念)抗滑力R的极限平衡接近程度”,之后的论述绕此展开。“实际滑动力”、“理论极限抗滑力”及“极限平衡接近程度”等用语是理解文献[3]观点的关键。

    第②种定义中的“抗剪强度”及“剪应力”也可表达为“抗力”及“荷载”或“抗滑力”及“滑动力”,从文献[3]角度来看,极限抗滑力是理论的,故是“虚拟概念”;实际滑动力即实际发生的荷载,与抗滑力相等时则土体处于极限平衡状态;在安全系数K计算过程中通过逐步折减而逼近极限平衡状态,表达了实际滑动力与抗滑力的接近程度,故文献[3]更适合从第②种定义及强度折减法的角度去理解。倘若如此,则:

    (1)文献[3]认为原文极限平衡力学基本概念混淆、错误、缺失。笔者认为,原文没有明示但实质上依据的是第一种定义,文献[3]讨论的实质上属于第②种定义,两种定义中的概念不同是正常现象。

    (2)文献[3]认为“分子与分母加减项的变化必然影响到安全系数计算结果,但这绝不是极限平衡概念的滑动力荷载与极限抗滑力概念错位问题的探讨依据”,笔者同意。“分子与分母加减项的变化必然影响到安全系数计算结果”正是原文目的,原文探讨的就是加减项中的那些不合理项导致的按第一种定义编写的安全系数计算公式有时并不完全符合第一种定义这种现象;“计算结果……不是概念错位问题的探讨依据”,因为定义形式不同,当然不能把根据第一种定义获得的计算结果当作探讨第二种定义概念的依据。

    (3)文献[3]认为抗滑力是虚拟受力。笔者认为,抗滑力大于滑动力时可如此认为,小于时(处于极限平衡状态或滑坡时)则不是虚拟的、而是实际发生的。

    (4)文献[3]认为“在K=RS公式中,分子抗滑力R包含所有极限虚拟概念状态的抗滑力因素,不论正负......分母滑动力S包含所有实际切向滑动力因素,不论正负”,笔者没有理解。①所有的抗滑力均应是同向、即“正”的,“负抗滑力”指的是什么呢?如果是负的,与抗滑力反向的,就应该是滑动力;但如果是滑动力,就应该如第②种定义及文献[3]前述,是实际发生的,那么就不是“虚拟概念”的,因为“虚拟概念”的是抗滑力;但如果是抗滑力,就应该与其它“正”抗滑力同向、不应为负,故“负抗滑力”到底是什么力,很难理解;②同理,所有的滑动力均应是同向、即“正”的,“负滑动力很难理解;③假定部分滑动力也可以“虚拟概念”、即作为“负抗滑力”计入分子R,部分抗滑动可以实际发生、即作为“负滑动力”计入分母S,那么,哪些滑动力可以计入分子、哪些抗滑力可以计入分母?

    仍以瑞典条分法为例,当滑弧中心点O位于边坡上方时,如图1所示,土条1~(m-1)的重力产生滑动力m1i=1Gti,土条m~n的重力产生抗滑力ni=mGti,两者作用方向相反,围绕着两者关系如何处理产生4种稳定安全系数K计算公式,其中前2种工程应用广泛:

    K=ni=1(Gnitanφi+cili)m1i=1Gtini=mGti, (1)
    K=ni=1(Gnitanφi+cili)m1i=1Gti+ni=mGti, (2)
    K=ni=1(Gnitanφi+cili)ni=mGtim1i=1Gti, (3)
    K=ni=1(Gnitanφi+cili)+ni=mGtim1i=1Gti (4)
    图  1  瑞典条分法边坡稳定分析简图
    Figure  1.  Sketch about slope stability analysis by Swedish Slicing Method

    式(1)~(4)从文献[3]角度来看:①式(1)将ni=mGti放在分母与滑动力m1i=1Gti相减,可认为是S中的“负滑动力”;②式(2)将之放在分母与滑动力相加,可认为是S中的“正滑动力”;③式(3)将之放在分子与抗滑力ni=1Gnitanφi+cili相减,可认为是R中的“负抗滑力”;④式(4)将之放在分子与抗滑力相加,可认为是R中的“正抗滑力”。那么,ni=mGti到底是“负滑动力”、“正滑动力”、“负抗滑力”还是“正抗滑力”?这个问题文献[3]没有指明如何处理,却正是原文所讨论的核心内容,换句话说,在这个问题上原文所讨论的内容与孙文观点是互补的。

    (4)其余意见详见笔者对文献[2]的回复意见,不再赘述。

    总结:①业界对边坡稳定安全系数的主要定义形式有两种,原文依据的是第一种,孙文实质上依据的是第二种,故概念有所不同;②文献[3]提出了“负抗滑力”及“负滑动力”等观点但没有提出实现方法,没有解决原文讨论的安全系数计算公式中抗力与荷载错位(从文献[3]角度可理解为抗滑力与滑动力应用不当)的问题。

    笔者对文献[3]理解不准确及本回复意见不妥之处,敬请孙老师及读者们谅解及继续批评指正。

  • 图  1   颗粒粒径分布曲线

    Figure  1.   Grain-size distribution curve

    图  2   泥水分离界面沉降曲线

    Figure  2.   Settlement curves of sludge-water separation interface

    图  3   不同CaCl2掺量下泥水分离界面沉降曲线

    Figure  3.   Settlement curves of sludge-water separation interface under different CaCl2 dosages

    图  4   不同PAS掺量下泥水分离界面沉降曲线

    Figure  4.   Settlement curves of sludge-water separation interface under different PAS dosages

    图  5   不同絮凝剂掺量下泥浆沉降速率曲线

    Figure  5.   Curves of settlement rate of sludge under different flocculant dosages

    图  6   泥浆沉降稳定时间确定方法示意图

    Figure  6.   Schematic diagram of method for determining stabilization time of settlement of sludge

    图  7   上覆水水质特性

    Figure  7.   Characteristics of overlying water quality

    图  8   不同絮凝剂掺量下去浊率

    Figure  8.   Turbidities under different flocculant dosages

    表  1   淤泥的基本物理性质

    Table  1   Basic physical properties of dredged materials

    含水率/% 液限/% 塑限/% 塑性指数 黏粒含量/% 相对质量密度 有机质含量/%
    100.4 55.9 20.6 35.3 28.00 2.72 0.75
    注:①粒径小于5 μm;②重铬酸钾容量法。
    下载: 导出CSV

    表  2   量筒沉积试验方案

    Table  2   Schemes of measuring cylinder sedimentation tests

    加药种类 絮凝剂掺量/%
    CaCl2 0,0.5,0.8,0.9,1.0,1.2
    PAS 0,0.1,0.2,0.5,0.7,1.0
    下载: 导出CSV

    表  3   不同絮凝剂掺量下淤泥自重沉积稳定时间

    Table  3   Stabilization time of self-weight sedimentation of sludge under different flocculant dosages

    絮凝剂 CaCl2/PAS
    掺量/% 0 0.5/0.1 0.8/0.2 0.9/0.5 1.0/0.7 1.2/1.0
    Tc/d 3.39 2.63/2.65 2.54/2.58 2.58/2.60 2.77/2.61 2.80/2.63
    下载: 导出CSV
  • [1]

    XU G Z, GAO Y F, HONG Z S, et al. Sedimentation behavior of four dredged slurries in China[J]. Marine Georesources & Geotechnology, 2012, 30(2): 143-156.

    [2] 朱伟, 闵凡路, 吕一彦, 等. "泥科学与应用技术"的提出及研究进展[J]. 岩土力学, 2013, 34(11): 3041-3054. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201311001.htm

    ZHU Wei, MIN Fanlu, LÜ Yiyan, et al. Subject of "mud science and application technology"and its research progress[J]. Rock and Soil Mechanics, 2013, 34(11): 3041-3054. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201311001.htm

    [3] 黄英豪, 戴济群, 徐锴. 新拌固化淤泥的流动性和黏滞性试验研究[J]. 岩土工程学报, 2022, 44(2): 235-244. doi: 10.11779/CJGE202202004

    HUANG Yinghao, DAI Jiqun, XU Kai. Flowability and viscosity of freshly solidified dredged materials[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(2): 235-244. (in Chinese) doi: 10.11779/CJGE202202004

    [4] 苏德纯, 胡育峰, 宋崇渭, 等. 官厅水库坝前疏浚底泥的理化特征和土地利用研究[J]. 环境科学, 2007, 28(6): 1319-1323. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ200706027.htm

    SU Dechun, HU Yufeng, SONG Chongwei, et al. Physicochemical properties of Guanting Reservoir sediment and its land application[J]. Environmental Science, 2007, 28(6): 1319-1323. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ200706027.htm

    [5] 金雪林, 薛路阳, 金杰. 生态清淤及淤泥快速处置一体化技术的应用[J]. 人民黄河, 2013, 35(9): 43-45. https://www.cnki.com.cn/Article/CJFDTOTAL-RMHH201309016.htm

    JIN Xuelin, XUE Luyang, JIN Jie. Application of ecological dredging silt and rapid disposal of the integration technology[J]. Yellow River, 2013, 35(9): 43-45. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-RMHH201309016.htm

    [6] 李晓威, 吕鹏, 彭万里. 湖泊环保疏浚工程中泥浆絮凝效率的优化研究[J]. 人民黄河, 2016, 38(9): 64-67. https://www.cnki.com.cn/Article/CJFDTOTAL-RMHH201609017.htm

    LI Xiaowei, LÜ Peng, PENG Wanli. Optimization study on the mud flocculation efficiency in the lake environmental dredging engineering[J]. Yellow River, 2016, 38(9): 64-67. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-RMHH201609017.htm

    [7] 章荣军, 蒋达飞, 郑俊杰. 絮凝调理对淤泥(浆)固结特性的影响[J]. 华中科技大学学报(自然科学版), 2021, 49(7): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG202107001.htm

    ZHANG Rongjun, JIANG Dafei, ZHENG Junjie. Effect of flocculation conditioning on consolidation characteristics of mud(slurry)[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2021, 49(7): 1-6. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG202107001.htm

    [8] 袁国辉, 胡秀青, 刘飞禹, 等. 絮凝-逐级加压电渗法改良疏浚淤泥试验研究[J]. 岩石力学与工程学报, 2020, 39(增刊1): 2995-3003. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2020S1040.htm

    YUAN Guohui, HU Xiuqing, LIU Feiyu, et al. Experimental study on the improvement of dredged slurry by flocculation-step-by-step loading voltage electro-osmosis method[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(S1): 2995-3003. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2020S1040.htm

    [9] 刘飞禹, 吴文清, 海钧, 等. 絮凝剂对电渗处理河道疏浚淤泥的影响[J]. 中国公路学报, 2020, 33(2): 56-63, 72. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202002005.htm

    LIU Feiyu, WU Wenqing, HAI Jun, et al. Effect of flocculants on electro-osmotic treatment of river dredged sludge[J]. China Journal of Highway and Transport, 2020, 33(2): 56-63, 72. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202002005.htm

    [10]

    IMAI G. Experimental studies on sedimentation mechanism and sediment formation of clay materials[J]. Soils and Foundations, 1981, 21(1): 7-20.

  • 期刊类型引用(2)

    1. 王卫星,潘大荣,陈立. 某地铁车站基坑外车道超载安全性分析. 江苏建筑. 2023(04): 112-114+125 . 百度学术
    2. 谷浩源,韩流,张健,刘世宝,高志强,吴锋锋. 水-热耦合下露天矿冻结期靠帮开采边坡稳定性研究. 煤矿安全. 2023(12): 159-166 . 百度学术

    其他类型引用(0)

图(8)  /  表(3)
计量
  • 文章访问数:  172
  • HTML全文浏览量:  33
  • PDF下载量:  47
  • 被引次数: 2
出版历程
  • 收稿日期:  2023-07-05
  • 网络出版日期:  2023-11-23
  • 刊出日期:  2023-10-31

目录

    /

    返回文章
    返回