Intelligent evaluation method for integrity of hydraulic rock mass by coupling multi-source survey information
-
摘要: 岩体完整性是评价水工岩体质量等级的重要参数,传统方法往往采用的单一指标难以全面反映结构面、地下水、卸荷等地质条件对评判结果的综合影响。提出了一种耦合多源勘察信息的水工岩体完整性智能评价方法。首先利用合成少数类过采样算法对勘察信息数据进行均衡处理,改善数据集结构;进而采用随机森林算法分别对原始岩体完整性数据和预处理后的数据进行预测,结合实际工程数据进行有效性及适用性验证,并针对影响岩体完整性的不同因素对预测结果进行了讨论分析。结果表明,所提出的方法对数据集的均衡处理可有效改善少数类岩体样本完整性的评价准确率,通过耦合并挖掘不同完整性指标中的深层信息,实现岩体完整性的智能评价,为进一步辅助岩体质量评价提供新的方法。Abstract: The integrity of rock mass is an important parameter in evaluating the quality grade of hydraulic rock mass. The traditional methods often adopt a single index that cannot fully reflect the comprehensive influences of geological conditions such as structural plane, groundwater, and unloading on the evaluation results. An intelligent evaluation method for the integrity of hydraulic rock mass is proposed by coupling with multi-source survey information. Firstly, the synthetic minority oversampling (SMOTE) algorithm is used to balance the survey information data to improve the data set structure. Then the random forest algorithm is used to predict the original rock mass integrity data and the pre-processed data, respectively. Based on the data of actual projects, the validity and applicability are verified, and the predicted results are discussed and analyzed according to different factors affecting the integrity of rock mass. The results show that the proposed method can effectively improve the evaluation accuracy of the integrity of a few rock samples by balancing the data sets. By coupling and mining the deep information of different integrity indexes, the intelligent evaluation of rock mass integrity can be realized, which provides a new method for further assisting the evaluation of rock mass quality.
-
-
表 1 岩体完整性评价标准
Table 1 Evaluation standards for rock mass integrity
完整
程度完整 较完整 完整
性差较破碎 破碎 RQD/% 90~100 75~90 50~75 25~50 0~25 Jv/
(条·m-3)0~3 3~10 10~20 20~35 >35 Kv 0.75~1 0.55~0.75 0.35~0.55 0.15~0.35 0~0.15 表 2 Kappa系数一致等级表
Table 2 Scales of Kappa coefficient
系数 0~0.2 0.2~0.4 0.4~0.6 0.6~0.8 0.8~1.0 一致等级 极低 一般 中等 高度 几乎完全一致 表 3 工程岩体多源勘察数据
Table 3 Multi-source survey data of engineering rock mass
序号 平硐 桩号 RQD/% Jv/(条·m-3) Kv 应力分带 岩体结构类型 岩体嵌合程度 完整性 1 PD01 220—250 99 6.0 0.85 集中带 块状结构 紧密 完整(1) 2 PD04 130—175 63 12.9 0.37 过渡带 次块状结构 较紧密 完整性差(3) 3 PD05 146.7—188 55 7.3 0.87 平稳带 镶嵌碎裂结构 较紧密 较完整(2) 4 PD07 70—160 80 5.5 0.88 过渡带 中厚层状结构 较紧密 较完整(2) 5 PD12 37—75 29 21.0 0.17 弱卸荷带 层状破碎结构 松弛 较破碎(4) 6 PD30 17—65 51 16.8 0.53 释放带 破碎结构 较松驰 完整性差(3) 表 4 两种模型输出结果与岩体完整性对应关系
Table 4 Correspondence between output results of two models and rock mass integrity
岩体完整性 两种机器学习模型测试准确率/% RF模型 SMOTE-RF模型 完整 33.3 66.7 较完整 92.3 92.3 完整性差 88.2 100.0 较破碎 66.7 100.0 总准确率 83.3 94.4 表 5 工程岩体分段评价结果
Table 5 Sectional evaluation results of engineering rock mass
序号 平硐 桩号 野外勘探岩体完整性评价 SMOTE-RF模型岩体完整性评价 1 PD01 250—301.5 完整(1) 较完整(2) 2 PD46 190—215 较完整(2) 完整性差(3) 表 6 裂隙发育特征
Table 6 Characteristics of fracture development
组别 规则裂隙产状 裂隙线平均
间距统计(5 m×2 m)规则裂隙延伸长度 张开度/mm 粗糙度 充填物类型 主要结构面类型 地下水 1 N40-60°E/SE∠65-80° 一般 > 1,个别0.1~0.5 一般1~3 0~2 平糙 少许钙膜 节理裂隙 干燥 2 N30-50°E/NW∠25-35° 薄—中层 > 2 0~2 起滑 绿泥石膜 节理裂隙 湿润 3 N5-20°W/SW∠50-70° 零星 1~3 0~5 起糙 不连续泥膜、岩屑 结构面 湿润 4 N30-50°W/NE∠25-30° 零星 > 1 0~2 起糙 不连续泥膜、岩屑 结构面 湿润 表 7 该岩体分段三组构造带基本情况与特征
Table 7 Basic situations and characteristics of three groups of structural zones in rock mass
编号 构造类型 产状 起伏情况 充填物 力学性质 其他特征 f46-1 切层错动带 N25E/SE∠80 起伏 灰黄色压碎岩 压性 上游壁与顶拱接触处见一长25 cm,宽
6 cm,深60 cm的溶洞f46-3 切层错动带 N75E/NW∠70 起伏 黑色压碎岩 压性 含土白色方解石粉沫,局部软化夹泥;上
游壁见宽40~80 cm影响带,逆断层f46-4 切层错动带 N20E/SE∠25 微起伏 灰黑色角砾岩及
压碎岩压扭性 局部软化,泥化;下盘见宽1.2 m破碎岩,
破碎结构,上盘湿润表 8 两种模型输出结果与岩体完整性对应关系
Table 8 Correspondence between output results of two models and rock mass integrity
岩体完整性 两种机器学习模型测试准确率/% RF模型 SMOTE-RF模型 完整 66.7 83.3 较完整 100.0 100.0 完整性差 62.5 87.5 总准确率 79.2 91.7 表 9 工程岩体分段评价结果
Table 9 Sectional evaluation results of engineering rock mass
序号 平硐 桩号 野外勘探岩体完整性评价 SMOTE-RF模型岩体完整性评价 1 PD102 64—85 完整(1) 较完整(2) 2 PD107 25—38 完整性差(3) 较完整(2) 表 10 工程岩体岩脉特征描述表
Table 10 Description of dike characteristics of engineering rock mass
编号 桩号 产状 宽度/cm 颜色 特征 完整性 蚀变程度 Ym102~5 左72顶72.8右75 N60°E/NW∠80° 30~60 浅黄色 发育断层f102~5及宽
2~4 cm的石英脉,石英
脉局部宽9 cm完整性差 蚀变不明显 Ym102~6 左78.3~79.4顶78.5~79.1右81~81.6 N60°E/NW∠60° 60~110 灰白—浅黄色 宽2~3 cm的石英脉,
断续延伸较完整 上盘局部蚀变3~5 cm -
[1] 刘飞跃, 刘一汉, 杨天鸿, 等. 基于岩芯图像深度学习的矿山岩体质量精细化评价[J]. 岩土工程学报, 2021, 43(5): 968-974. doi: 10.11779/CJGE202105023 LIU Feiyue, LIU Yihan, YANG Tianhong, et al. Meticulous evaluation of rock mass quality in mine engineering based on machine learning of core photos[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(5): 968-974. (in Chinese) doi: 10.11779/CJGE202105023
[2] 梁靖, 崔圣华, 裴向军, 等. 考虑岩体构造损伤的强震大型滑坡启动成因[J]. 岩土工程学报, 2021, 43(6): 1039-1049. doi: 10.11779/CJGE202106007 LIANG Jing, CUI Shenghua, PEI Xiangjun, et al. Initiation mechanism of earthquake-induced large landslides considering structural damage[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1039-1049. (in Chinese) doi: 10.11779/CJGE202106007
[3] NIKAFSHAN R H, JALALI Z, JALALIFAR H. Prediction of rock mass rating system based on continuous functions using Chaos–ANFIS model[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 73: 1-9. doi: 10.1016/j.ijrmms.2014.10.004
[4] GHOLAMI R, RASOULI V, ALIMORADI A. Improved RMR rock mass classification using artificial intelligence algorithms[J]. Rock Mechanics and Rock Engineering, 2013, 46(5): 1199-1209. doi: 10.1007/s00603-012-0338-7
[5] ZHANG Y Z, JI H G, LI W G, et al. Research on rapid evaluation of rock mass quality based on ultrasonic borehole imaging technology and fractal method[J]. Advances in Materials Science and Engineering, 2021, 2021: 1-9.
[6] 水利水电工程地质勘察规范: GB 50487—2008[S]. 北京: 中国计划出版社, 2009. Code for Engineering Geological Invcstigation of Water Resources and Hydropower: GB 50487—2008[S]. Beijing: China Planning Press, 2009. (in Chinese)
[7] BARTON N, LIEN R, LUNDE J. Engineering classification of rock masses for the design of tunnel support[J]. Rock Mechanics, 1974, 6(4): 189-236. doi: 10.1007/BF01239496
[8] HOEK E, BROWN E T. Practical estimates of rock mass strength[J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(8): 1165-1186. doi: 10.1016/S1365-1609(97)80069-X
[9] 许宏发, 陈锋, 王斌, 等. 岩体分级BQ与RMR的关系及其力学参数估计[J]. 岩土工程学报, 2014, 36(1): 195-198. doi: 10.11779/CJGE201401021 XU Hongfa, CHEN Feng, WANG Bin, et al. Relationship between RMR and BQ for rock mass classification and estimation of its mechanical parameters[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(1): 195-198. (in Chinese) doi: 10.11779/CJGE201401021
[10] 李明超, 史博文, 韩帅, 等. 基于对穿声波波速的岩体完整性多尺度评价新指标与分析方法[J]. 岩石力学与工程学报, 2020, 39(10): 2060-2068. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202010010.htm LI Mingchao, SHI Bowen, HAN Shuai, et al. New index and analysis method for multi-scale rock mass integrity assessment based on P-wave velocity[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(10): 2060-2068. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202010010.htm
[11] 曹瑞琅, 王玉杰, 赵宇飞, 等. 基于钻进过程指数定量评价岩体完整性原位试验研究[J]. 岩土工程学报, 2021, 43(4): 679-687. doi: 10.11779/CJGE202104010 CAO Ruilang, WANG Yujie, ZHAO Yufei, et al. In-situ tests on quantitative evaluation of rock mass integrity based on drilling process index[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(4): 679-687. (in Chinese) doi: 10.11779/CJGE202104010
[12] 李清波, 杜朋召. 基于边缘阈值分割的钻孔图像RQD自动分析方法研究[J]. 岩土工程学报, 2020, 42(11): 2153-2160. doi: 10.11779/CJGE202011022 LI Qingbo, DU Pengzhao. Automatic RQD analysis method based on information recognition of borehole images[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 2153-2160. (in Chinese) doi: 10.11779/CJGE202011022
[13] GUO H S, FENG X T, LI S J, et al. Evaluation of the integrity of deep rock masses using results of digital borehole televiewers[J]. Rock Mechanics and Rock Engineering, 2017, 50(6): 1371-1382.
[14] 殷明伦, 张晋勋, 江玉生, 等. 岩体体积节理数表征岩体完整系数的结构面类别修正研究[J]. 岩土力学, 2021, 42(4): 1133-1140. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202104027.htm YIN Minglun, ZHANG Jinxun, JIANG Yusheng, et al. Study of correction of the structural plane category based on the rock mass integrity coefficient characterized by the volumetric joint count[J]. Rock and Soil Mechanics, 2021, 42(4): 1133-1140. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202104027.htm
[15] SONG Y H, XUE H S. Correlations between rock mass intactness index (Kv) and other rock mass classification indices (RMR89 system and GSI)[J]. Bulletin of Engineering Geology and the Environment, 2021, 80(10): 7807-7816.
[16] PELLS P J, BIENIAWSKI Z T, HENCHER S R, et al. Rock quality designation (RQD): time to rest in peace[J]. Canadian Geotechnical Journal, 2017, 54(6): 825-834.
[17] DEERE D U. Technical description of rock cores for engineering purpose[J]. Rock Mechanics and Engineering Geology, 1964, 1(1): 17-22.
[18] 张文, 陈剑平, 牛岑岑, 等. 基于三维裂隙网络RQD的确定及最佳测线数量的研究[J]. 岩土工程学报, 2013, 35(2): 321-327. http://www.cgejournal.com/cn/article/id/14979 ZHANG Wen, CHEN Jianping, NIU Cencen, et al. Determination of RQD and number of optimum scanlines based on three-dimensional fracture network[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(2): 321-327. (in Chinese) http://www.cgejournal.com/cn/article/id/14979
[19] 薛秋池, 赵其华, 何云松. 岩体结构面网络模拟的改进与应用[J]. 岩土工程学报, 2016, 38(7): 1351-1356. doi: 10.11779/CJGE201607025 XUE Qiuchi, ZHAO Qihua, HE Yunsong. Improvement and application of network simulation of rock mass discontinuities[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(7): 1351-1356. (in Chinese) doi: 10.11779/CJGE201607025
[20] ZHANG L Y. Determination and applications of rock quality designation (RQD)[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2016, 8(3): 389-397.
[21] FALLS S D, YOUNG R P. Acoustic emission and ultrasonic-velocity methods used to characterise the excavation disturbance associated with deep tunnels in hard rock[J]. Tectonophysics, 1998, 289(1/2/3): 1-15.
[22] 段世委, 许仙娥. 岩体完整性系数确定及应用中的几个问题探讨[J]. 工程地质学报, 2013, 21(4): 548-553. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201304012.htm DUAN Shiwei, XU Xiane. Discussion of problems in calculation and application of rock mass integrity coefficient[J]. Journal of Engineering Geology, 2013, 21(4): 548-553. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201304012.htm
[23] 陈祥, 孙进忠, 谭朝爽, 等. 岩块波速–应力关系及其卸荷效应[J]. 岩土工程学报, 2010, 32(5): 757-761. http://www.cgejournal.com/cn/article/id/13396 CHEN Xiang, SUN Jinzhong, TAN Chaoshuang, et al. Relation between P-wave velocity and stress of rock samples and their unloading effect[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(5): 757-761. (in Chinese) http://www.cgejournal.com/cn/article/id/13396
[24] 水力发电工程地质勘察规范: GB/T 50287—2016[S]. 北京: 中国计划出版社, 2017. Code for Hydropower Engineering Geological Investigation: GB/T 50287—2016[S]. Beijing: China Planning Press, 2017. (in Chinese)
[25] 工程岩体分级标准: GB/T 50218—2014[S]. 北京: 中国计划出版社, 2015. Standard for Engineering Classification of Rock Mass: GB/T 50218—2014[S]. Beijing: China Planning Press, 2015. (in Chinese)
[26] 中小型水利水电工程地质勘察规范: SL 55—1993[S]. 北京: 中国水利电力出版社, 1994. Specification of Engineering Geological Investigation for Medium-Small Water Resources and Hydropower Development: SL 55—1993[S]. Beijing: China Water & Power Press, 1994. (in Chinese)
[27] 韩振华, 张路青, 袁广祥. 基于BQ系统的阿拉善巴彦诺日公NRG01号钻孔岩体质量评价[J]. 工程地质学报, 2019, 27(6): 1208-1215. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201906002.htm HAN Zhenhua, ZHANG Luqing, YUAN Guangxiang. Rock mass quality assessment of borehole NRG01 in bayannuorigong Alxa based on bq-system[J]. Journal of Engineering Geology, 2019, 27(6): 1208-1215. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201906002.htm
[28] CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE: synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002, 16: 321-357.
[29] BREIMAN L. Random forests[J]. Machine Learning, 2001, 45(1): 5-32.
[30] 陈旭, 俞缙, 李宏, 等. 不同岩性及含水率的岩石声波传播规律试验研究[J]. 岩土力学, 2013, 34(9): 2527-2533. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201309015.htm CHEN Xu, YU Jin, LI Hong, et al. Experimental study of propagation characteristics of acoustic wave in rocks with different lithologies and water contents[J]. Rock and Soil Mechanics, 2013, 34(9): 2527-2533. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201309015.htm
-
期刊类型引用(1)
1. 唐小东. 基于三维地质模型的路桥工程特殊地质岩体勘察方法研究. 中国高新科技. 2024(07): 39-41 . 百度学术
其他类型引用(0)
-
其他相关附件