• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

高温后花岗岩断裂特性及热裂纹演化规律研究

黄彦华, 陶然, 陈笑, 罗一鸣, 韩媛媛

黄彦华, 陶然, 陈笑, 罗一鸣, 韩媛媛. 高温后花岗岩断裂特性及热裂纹演化规律研究[J]. 岩土工程学报, 2023, 45(4): 739-747. DOI: 10.11779/CJGE20220125
引用本文: 黄彦华, 陶然, 陈笑, 罗一鸣, 韩媛媛. 高温后花岗岩断裂特性及热裂纹演化规律研究[J]. 岩土工程学报, 2023, 45(4): 739-747. DOI: 10.11779/CJGE20220125
HUANG Yanhua, TAO Ran, CHEN Xiao, LUO Yiming, HAN Yuanyuan. Fracture behavior and thermal cracking evolution law of granite specimens after high-temperature treatment[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(4): 739-747. DOI: 10.11779/CJGE20220125
Citation: HUANG Yanhua, TAO Ran, CHEN Xiao, LUO Yiming, HAN Yuanyuan. Fracture behavior and thermal cracking evolution law of granite specimens after high-temperature treatment[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(4): 739-747. DOI: 10.11779/CJGE20220125

高温后花岗岩断裂特性及热裂纹演化规律研究  English Version

基金项目: 

江苏省自然科学基金项目 BK20221547

中国博士后科学基金项目 2021M693424

国家级大学生创新创业训练计划项目 202110290017Z

详细信息
    作者简介:

    黄彦华(1989—),男,博士,副教授,硕士生导师,主要从事深部岩石力学与地下工程方面的研究工作。E-mail:huangyh1219@163.com

  • 中图分类号: TU452

Fracture behavior and thermal cracking evolution law of granite specimens after high-temperature treatment

  • 摘要: 在深部地热能开发中高温岩体会经历不同速率降温过程,研究高温作用后岩石力学行为对深部地下工程具有重要意义。然而,不同冷却方式下高温花岗岩断裂特性演化规律及作用机制尚不明晰。基于此,进行了不同冷却方式下花岗岩半圆盘试样三点弯曲试验,分析了高温后花岗岩荷载-位移曲线、断裂韧度以及破裂特征,探讨了微裂纹分布及矿物含量演化规律。试验结果表明:①随着温度的升高,花岗岩断裂韧度呈减小趋势,遇水冷却方式下断裂韧度低于自然降温条件;②三点弯曲作用下花岗岩半圆盘试样裂纹首先萌生于切槽尖端,逐渐向加载点方向扩展并将岩样劈裂。随着温度的升高,花岗岩试样的断裂痕迹曲折程度、与中心线之间的距离有所增大;③随着温度的升高,花岗岩矿物成分未明显变化,基于图像处理技术获得的微裂纹密度逐渐上升,遇水冷却方式下微裂纹密度大于自然降温方式,表明高温引起的微观结构劣化降低了花岗岩断裂韧度。
    Abstract: During the exploitation of deep geothermal energy, the thermal rocks will cool with different cooling rates. A comprehensive understanding of mechanical behavior of the thermal-treated rock is very important for deep underground engineering. However, the fracture behavior and influence mechanism of thermal granite specimens under different cooling ways are unclear at present. Therefore, in this study, the three-point bedding tests are carried out on the semicircular bend granite specimens after high-temperature treatment. The load-displacement curves, fracture toughnesses and failure patterns of the post-heated granite specimens are analyzed, and the evolution laws of micro-cracks and mineral components are discussed. The experimental results show that: (1) As the temperature increases, the fracture toughness of the granite specimens decreases. The fracture toughness of the specimens after quenching in water is lower than that after cooling down naturally in the furnace. (2) The crack initiated from the tip of notch propagates toward the loading point and splits the specimen into two parts. As the temperature increases, the tortuosity degree and deviation of fracture trace of the semicircular bend granite specimens increase. (3) The mineral components of granite are not significantly changed after high-temperature treatment. The micro-crack rate identified by the image processing increases with the increase of high temperature, and that of the specimen after quenching in water is higher than that after cooling down naturally in the furnace, which indicates that the deterioration of micro-structure of rock induced by high-temperature treatment reduces the fracture toughness of granite.
  • 图  1   不同晶粒花岗岩偏光显微图像

    Figure  1.   Thin-section observation of granites with different grains

    图  2   花岗岩半圆盘试样几何尺寸

    Figure  2.   Geometrical parameters of semicircular bend granite

    图  3   试验系统及岩石三点弯曲试验

    Figure  3.   Testing system and three-point bedding tests for rock

    图  4   高温后花岗岩试样荷载-位移曲线

    Figure  4.   Load-displacement curves of granite specimens after high-temperature treatment

    图  5   高温后花岗岩试样断裂韧度

    Figure  5.   Fracture toughnesses of granite specimens after high-temperature treatment

    图  6   高温后花岗岩典型破裂模式及断裂痕迹示意

    Figure  6.   Typical failure patterns of granite specimen after high temperature and schematic traces of fracture

    图  7   高温后A组花岗岩试样破裂面SEM图像

    Figure  7.   SEM images of fracture of group A granite specimens after high temperature

    图  8   高温后花岗岩SEM图像

    Figure  8.   SEM images of granite after high-temperature treatment

    图  9   基于图像处理的高温后花岗岩微裂纹分布

    Figure  9.   Micro-crack distribution of granite specimens after high temperature based on image processing

    图  10   花岗岩热裂纹密度随温度演化曲线

    Figure  10.   Evolution of thermal crack rate of granite with test temperature

    图  11   高温后A组花岗岩试样X射线衍射图谱

    Figure  11.   XRD spectra of group A granite after high-temperature treatment

    图  12   不同高温作用后A组花岗岩矿物含量

    Figure  12.   Mineral components of group A granite after high-temperature treatment

    图  13   升温过程岩石内部结构主要变化

    Figure  13.   Major changes in rock at elevated temperature

    表  1   高温后花岗岩试样断裂痕迹

    Table  1   Traces of fracture of granite after high temperature

    冷却 20 ℃ 200 ℃ 400 ℃ 600 ℃ 800 ℃
    自然/遇水 自然/遇水 自然/遇水 自然/遇水
    A组
    B组
    下载: 导出CSV
  • [1] 庞忠和, 罗霁, 程远志, 等. 中国深层地热能开采的地质条件评价[J]. 地学前缘, 2020, 27(1): 134-151. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202001018.htm

    PANG Zhonghe, LUO Ji, CHENG Yuanzhi, et al. Evaluation of geological conditions for the development of deep geothermal energy in China[J]. Earth Science Frontiers, 2020, 27(1): 134-151. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202001018.htm

    [2] 亢方超, 唐春安. 基于开挖的增强型地热系统概述[J]. 地学前缘, 2020, 27(1): 185-193. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202001023.htm

    KANG Fangchao, TANG Chun'an. Overview of enhanced geothermal system (EGS) based on excavation in China[J]. Earth Science Frontiers, 2020, 27(1): 185-193. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202001023.htm

    [3] 张洪伟, 万志军, 周长冰, 等. 干热岩高温力学特性及热冲击效应分析[J]. 采矿与安全工程学报, 2021, 38(1): 138-145. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL202101016.htm

    ZHANG Hongwei, WAN Zhijun, ZHOU Changbing, et al. High temperature mechanical properties and thermal shock effect of hot dry rock[J]. Journal of Mining & Safety Engineering, 2021, 38(1): 138-145. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL202101016.htm

    [4] 贾蓬, 杨其要, 刘冬桥, 等. 高温花岗岩水冷却后物理力学特性及微观破裂特征[J]. 岩土力学, 2021, 42(6): 1568-1578. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202106011.htm

    JIA Peng, YANG Qiyao, LIU Dongqiao, et al. Physical and mechanical properties and related microscopic characteristics of high-temperature granite after water-cooling[J]. Rock and Soil Mechanics, 2021, 42(6): 1568-1578. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202106011.htm

    [5] 朱振南, 田红, 董楠楠, 等. 高温花岗岩遇水冷却后物理力学特性试验研究[J]. 岩土力学, 2018, 39(增刊2): 169-176. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2018S2025.htm

    ZHU Zhennan, TIAN Hong, DONG Nannan, et al. Experimental study of physico-mechanical properties of heat-treated granite by water cooling[J]. Rock and Soil Mechanics, 2018, 39(S2): 169-176. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2018S2025.htm

    [6] 郤保平, 吴阳春, 赵阳升, 等. 不同冷却模式下花岗岩强度对比与热破坏能力表征试验研究[J]. 岩石力学与工程学报, 2020, 39(2): 286-300. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202002009.htm

    XI Baoping, WU Yangchun, ZHAO Yangsheng, et al. Experimental investigations of compressive strength and thermal damage capacity characterization of granite under different cooling modes[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(2): 286-300. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202002009.htm

    [7] 邓龙传, 李晓昭, 吴云, 等. 不同冷却方式对花岗岩力学损伤特征影响[J]. 煤炭学报, 2021, 46(增刊1): 187-199. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2021S1018.htm

    DENG Longchuan, LI Xiaozhao, WU Yun, et al. Mechanical damage characteristics of granite with different cooling methods[J]. Journal of China Coal Society, 2021, 46(S1): 187-199. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2021S1018.htm

    [8] 朱要亮, 俞缙, 高海东, 等. 水冷却对高温花岗岩的细观损伤及动力学性能影响[J]. 爆炸与冲击, 2019, 39(8): 84-95. https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ201908007.htm

    ZHU Yaoliang, YU Jin, GAO Haidong, et al. Effect of water cooling on microscopic damage and dynamic properties of high-temperature granite[J]. Explosion and Shock Waves, 2019, 39(8): 84-95. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ201908007.htm

    [9] 吴星辉, 蔡美峰, 任奋华, 等. 不同热处理作用下花岗岩纵波波速和导热能力的演化规律分析[J]. 岩石力学与工程学报, 2022, 41(3): 457-467. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202203003.htm

    WU Xinghui, CAI Meifeng, REN Fenhua, et al. P-wave evolution and thermal conductivity characteristics in granite under different thermal treatment[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(3): 457-467. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202203003.htm

    [10] 崔翰博, 唐巨鹏, 姜昕彤. 自然冷却和遇水冷却后高温花岗岩力-声特性试验研究[J]. 固体力学学报, 2019, 40(6): 571-582. https://www.cnki.com.cn/Article/CJFDTOTAL-GTLX201906005.htm

    CUI Hanbo, TANG Jupeng, JIANG Xintong. Experimental study on mechanical and acoustic characteristics of high-temperature granite after natural cooling and water cooling[J]. Chinese Journal of Solid Mechanics, 2019, 40(6): 571-582. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GTLX201906005.htm

    [11] 金爱兵, 王树亮, 魏余栋, 等. 不同冷却条件对高温砂岩物理力学性质的影响[J]. 岩土力学, 2020, 41(11): 3531-3539, 3603.

    JIN Aibing, WANG Shuliang, WEI Yudong, et al. Effect of different cooling conditions on physical and mechanical properties of high-temperature sandstone[J]. Rock and Soil Mechanics, 2020, 41(11): 3531-3539, 3603. (in Chinese)

    [12]

    FUNATSU T, KURUPPU M, MATSUI K. Effects of temperature and confining pressure on mixed-mode (Ⅰ-Ⅱ) and mode Ⅱ fracture toughness of Kimachi sandstone[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 67: 1-8.

    [13] 李春, 胡耀青, 张纯旺, 等. 不同温度循环冷却作用后花岗岩巴西劈裂特征及其物理力学特性演化规律研究[J]. 岩石力学与工程学报, 2020, 39(9): 1797-1807. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202009007.htm

    LI Chun, HU Yaoqing, ZHANG Chunwang, et al. Brazilian split characteristics and mechanical property evolution of granite after cyclic cooling at different temperatures[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(9): 1797-1807. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202009007.htm

    [14] 平琦, 苏海鹏, 马冬冬, 等. 不同高温作用后石灰岩物理与动力特性试验研究[J]. 岩土力学, 2021, 42(4): 932-942, 953. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202104007.htm

    PING Qi, SU Haipeng, MA Dongdong, et al. Experimental study on physical and dynamic mechanical properties of limestone after different high temperature treatments[J]. Rock and Soil Mechanics, 2021, 42(4): 932-942, 953. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202104007.htm

    [15]

    HUANG Y H, YANG S Q, BU Y S. Effect of thermal shock on the strength and fracture behavior of pre-flawed granite specimens under uniaxial compression[J]. Theoretical and Applied Fracture Mechanics, 2020, 106: 102474.

    [16]

    YANG S Q, RANJITH P G, JING H W, et al. An experimental investigation on thermal damage and failure mechanical behavior of granite after exposure to different high temperature treatments[J]. Geothermics, 2017, 65: 180-197.

    [17]

    FAN L F, WU Z J, WAN Z, et al. Experimental investigation of thermal effects on dynamic behavior of granite[J]. Applied Thermal Engineering, 2017, 125: 94-103.

    [18] 杨圣奇, 田文岭, 董晋鹏. 高温后两种晶粒花岗岩破坏力学特性试验研究[J]. 岩土工程学报, 2021, 43(2): 281-289. doi: 10.11779/CJGE202102008

    YANG Shengqi, TIAN Wenling, DONG Jinpeng. Experimental study on failure mechanical properties of granite with two grain sizes after thermal treatment[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(2): 281-289. (in Chinese) doi: 10.11779/CJGE202102008

    [19]

    KURUPPU M D, OBARA Y, AYATOLLAHI M R, et al. ISRM-suggested method for determining the mode Ⅰ static fracture toughness using semi-circular bend specimen[J]. Rock Mechanics and Rock Engineering, 2014, 47(1): 267-274.

    [20]

    FENG G, KANG Y, MENG T, et al. The influence of temperature on mode Ⅰ fracture toughness and fracture characteristics of sandstone[J]. Rock Mechanics and Rock Engineering, 2017, 50(8): 2007-2019.

    [21]

    SHAO Z L, TANG X H, WANG X G. The influence of liquid nitrogen cooling on fracture toughness of granite rocks at elevated temperatures: an experimental study[J]. Engineering Fracture Mechanics, 2021, 246: 107628.

    [22]

    PENG K, LV H, YAN F Z, et al. Effects of temperature on mechanical properties of granite under different fracture modes[J]. Engineering Fracture Mechanics, 2020, 226: 106838.

    [23] 谢和平. 分形-岩石力学导论[M]. 北京: 科学出版社, 2005.

    XIE Heping. Introduction to Fractal-Rock Mechanics[M]. Beijing: Science Press, 2005. (in Chinese)

    [24] 周磊, 董玉清, 朱哲明, 等. 高温对花岗岩细观及宏观力学断裂特性的影响[J]. 中南大学学报(自然科学版), 2022, 53(4): 1381-1391. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202204023.htm

    ZHOU Lei, DONG Yuqing, ZHU Zheming, et al. Influence of high temperature on micro and macro mechanical fracture characteristics of granite[J]. Journal of Central South University (Science and Technology), 2022, 53(4): 1381-1391. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202204023.htm

    [25]

    WU X G, HUANG Z W, CHENG Z, et al. Effects of cyclic heating and LN2-cooling on the physical and mechanical properties of granite[J]. Applied Thermal Engineering, 2019, 156: 99-110.

    [26]

    HAO J W, QIAO L, LIU Z Y, et al. Effect of thermal treatment on physical and mechanical properties of sandstone for thermal energy storage: a comprehensive experimental study[J]. Acta Geotechnica, 2022, 17(9): 3887-3908.

    [27]

    YANG S Q, XU P, LI Y B, et al. Experimental investigation on triaxial mechanical and permeability behavior of sandstone after exposure to different high temperature treatments[J]. Geothermics, 2017, 69: 93-109.

    [28]

    WONG L N Y, ZHANG Y H, WU Z J. Rock strengthening or weakening upon heating in the mild temperature range?[J]. Engineering Geology, 2020, 272: 105619.

    [29]

    ZHUANG D D, YIN T B, LI Q, et al. Effect of injection flow rate on fracture toughness during hydraulic fracturing of hot dry rock (HDR)[J]. Engineering Fracture Mechanics, 2022, 260: 108207.

  • 期刊类型引用(6)

    1. 唐宇,阳军生,郑响凑,童甲修,汤冲. 高温富水隧道弱风化片麻岩力学特性试验研究. 岩石力学与工程学报. 2025(01): 128-139 . 百度学术
    2. 马双泽,陈伟,吕聪聪,张塑彪,张帆. 高温与循环冷却对花岗岩抗剪强度影响试验研究. 矿业研究与开发. 2025(03): 137-147 . 百度学术
    3. 王健翔,孙珍平,王士奎,许蕾. 高温作用后砂岩力学性能及裂纹演化特征研究. 金属矿山. 2025(04): 61-68 . 百度学术
    4. 朱振南,王殿永,杨圣奇,解经宇,袁益龙,吴廷尧,田文岭,孙博文,田红,陈劲. 不同冷却速率下干热花岗岩渗透率演化特征对比研究. 岩石力学与工程学报. 2024(02): 385-398 . 百度学术
    5. 周韬,范永林,陈家嵘,周昌台. 热损伤花岗岩力学劣化特性及损伤演化规律研究. 矿业科学学报. 2024(03): 351-360 . 百度学术
    6. 何将福,任成程,何坤,余启航,李欣儒,邓旭. 循环热冲击花岗岩微观裂隙表征与渗透特性演化规律. 煤田地质与勘探. 2024(12): 131-142 . 百度学术

    其他类型引用(8)

图(13)  /  表(1)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 14
出版历程
  • 收稿日期:  2022-02-07
  • 网络出版日期:  2023-04-16
  • 刊出日期:  2023-03-31

目录

    /

    返回文章
    返回