Experimental study on interfacial shear properties of steel plate, polymer and soil
-
摘要: 为了研究高聚物与不同介质界面的剪切特性,基于直剪试验,研究了土体含水率、法向应力、界面类型、高聚物密度和成型方式等因素对界面剪切强度的影响。研究结果表明:钢板-高聚物界面破坏形式与其它界面存在差异,呈现脆性破坏。不同界面的剪切强度与高聚物密度、法向应力和土体含水率存在关系。界面的剪应力值随高聚物密度和法向应力的增大而逐渐增大,随含水率的增大而减小。当法向应力和土体含水率一定时,非预成型高聚物-土体界面剪切强度大于预成型高聚物-土体界面,但随着含水率的增大,高聚物成型方式对高聚物-土体界面剪切强度的影响逐渐减小。当其它条件一致时,钢板-高聚物界面、高聚物-土体界面、土体自身和钢板-土体界面的剪切强度依次减小,使用高聚物后,界面抗剪强度分别提高了73%,108%,125%和115%,钢板-高聚物-土体界面的抗剪强度明显优于单纯钢板-土体界面。Abstract: The shear properties of interfaces between polymer and different media are investigated based on the direct shear tests. The effects of moisture content of soil, normal stress, interface types, polymer density and molding method on the interfacial shear strength are all examined. The results show that the steel plate-polymer interface exhibits brittle failure mode, which is different from that of other interfaces. The shear strength of different interfaces depends upon the polymer density, normal stress and moisture content of soil. The interfacial shear stress increases with the increase of the polymer density and normal stress, but decreases as the moisture content increases. Given the normal stress and moisture content, the shear strength of the non-preformed polymer-soil interface is greater than that of the preformed polymer-soil interface. Nevertheless, with the increase of the moisture content, the influences of polymer-forming methods on the shear strength of the polymer-soil interfaces are gradually weakened. Given other conditions the same, the shear strengths of the steel plate-polymer interface, polymer-soil interface, soil itself, and steel plate-soil interface decrease in order. After using the polymer, the interfacial shear strength is increased by 73%, 108%, 125% and 115%, respectively. The steel plate-polymer-soil interface mechanically outperforms the steel plate-soil interface in terms of the shear strength.
-
Keywords:
- interface /
- direct shear test /
- polymer /
- shear property /
- shear strength
-
-
表 1 不同界面抗剪强度指标值
Table 1 Values of shear strength indexes of different interfaces
界面类型 含水率/% /(°) R2 钢板-高聚物 — 46.7 280.7 1.00 非预成型高聚物-土体 16 50.1 16.3 0.99 预成型高聚物-土体 12 26.8 35.7 0.99 16 24.9 27.3 0.98 20 30.8 1.3 1.00 24 30.3 6.0 1.00 钢板-土体 12 24.0 5.0 0.98 16 19.8 4.0 1.00 20 23.0 0.3 1.00 24 22.3 2.3 0.97 土体 12 31.0 24.3 1.00 16 32.2 16.7 1.00 20 31.4 16.3 1.00 24 31.6 10.3 1.00 -
[1] 边学成, 程翀, 王复明, 等. 高速铁路路基沉降高聚物注浆修复后动力性能及长期耐久性的试验研究[J]. 岩土工程学报, 2014, 36(3): 562-568. doi: 10.11779/CJGE201403020 BIAN Xuecheng, CHENG Chong, WANG Fuming, et al. Experimental study on dynamic performance and long-term durability of high-speed railway subgrade rehabilitated by polymer injection technology[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 562-568. (in Chinese) doi: 10.11779/CJGE201403020
[2] LI B, WANG F M, FANG H Y, et al. Experimental and numerical study on polymer grouting pretreatment technology in void and corroded concrete pipes[J]. Tunnelling and Underground Space Technology, 2021, 113: 103842. doi: 10.1016/j.tust.2021.103842
[3] 王复明, 李文辉, 郭成超, 等. 基于高聚物渗透注浆的半刚性基层路面承载性能恢复研究[J]. 北京交通大学学报, 2019, 43(3): 1-7. doi: 10.3969/j.issn.1672-8106.2019.03.001 WANG Fuming, LI Wenhui, GUO Chengchao, et al. Research on bearing performance recovery of semi-rigid base pavement on the basis of permeable polymer grouting[J]. Journal of Beijing Jiaotong University, 2019, 43(3): 1-7. (in Chinese) doi: 10.3969/j.issn.1672-8106.2019.03.001
[4] 王娟, 方宏远, 余自森, 等. 高聚物碎石混合料单轴受压性能试验研究[J]. 建筑材料学报, 2019, 22(2): 320-326. doi: 10.3969/j.issn.1007-9629.2019.02.024 WANG Juan, FANG Hongyuan, YU Zisen, et al. Experimental study on uniaxial compressive properties of polymer gravel mixtures[J]. Journal of Building Materials, 2019, 22(2): 320-326. (in Chinese) doi: 10.3969/j.issn.1007-9629.2019.02.024
[5] FANG H Y, YU Z S, WANG J, et al. Effects of crushed stones on the compression properties of polymer grout materials[J]. Construction and Building Materials, 2021, 271: 121517. doi: 10.1016/j.conbuildmat.2020.121517
[6] 石明生, 夏威夷, 王复明, 等. 高聚物锚固体与粉土间黏结性能试验研究[J]. 岩土工程学报, 2014, 36(4): 724-730. doi: 10.11779/CJGE201404017 SHI Mingsheng, XIA Weiyi, WANG Fuming, et al. Experimental study on bond performance between polymer anchorage body and silt[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(4): 724-730. (in Chinese) doi: 10.11779/CJGE201404017
[7] PAN Y H, FANG H Y, LI B, et al. Stability analysis and full-scale test of a new recyclable supporting structure for underground ecological granaries[J]. Engineering Structures, 2019, 192: 205-219. doi: 10.1016/j.engstruct.2019.04.087
[8] 刘恒, 石明生, 王复明. 聚氨酯高聚物与钢筋粘结强度试验研究[J]. 地下空间与工程学报, 2016, 12(5): 1219-1225. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201605012.htm LIU Heng, SHI Mingsheng, WANG Fuming. Experimental research on the bond strength between polyurethane polymer and steel bars[J]. Chinese Journal of Underground Space and Engineering, 2016, 12(5): 1219-1225. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201605012.htm
[9] LI M J, FANG H Y, DU M R, et al. The behavior of polymer-bentonite interface under shear stress[J]. Construction and Building Materials, 2020, 248: 118680. doi: 10.1016/j.conbuildmat.2020.118680
[10] 王钰轲, 万永帅, 刘琪, 等. 非水反应高聚物与土工材料的界面剪切特性[J]. 建筑材料学报, 2021, 24(1): 115-120. doi: 10.3969/j.issn.1007-9629.2021.01.016 WANG Yuke, WAN Yongshuai, LIU Qi, et al. Interfacial shear properties of non-water reacted polymer and geomaterials[J]. Journal of Building Materials, 2021, 24(1): 115-120. (in Chinese) doi: 10.3969/j.issn.1007-9629.2021.01.016
[11] LIN Z Z, GUO C C, CAO D F, et al. An experimental study on the cutting failure of polymer grouting[J]. Construction and Building Materials, 2020, 258: 119582. doi: 10.1016/j.conbuildmat.2020.119582
[12] POTYONDY J G. Skin friction between various soils and construction materials[J]. Géotechnique, 1961, 11(4): 339-353. doi: 10.1680/geot.1961.11.4.339
[13] 金子豪, 杨奇, 陈琛, 等. 粗糙度对混凝土-砂土接触面力学特性的影响试验研究[J]. 岩石力学与工程学报, 2018, 37(3): 754-765. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201803024.htm JIN Zihao, YANG Qi, CHEN Chen, et al. Experimental study on effects of the roughness on mechanical behaviors of concrete-sand interface[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(3): 754-765. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201803024.htm
[14] 赵春风, 吴悦, 赵程, 等. 考虑卸荷效应的砂土-混凝土接触面剪切特性影响研究[J]. 岩石力学与工程学报, 2018, 37(4): 1020-1029. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201804025.htm ZHAO Chunfeng, WU Yue, ZHAO Cheng, et al. Effect of unloading on shear behavior of interface between sand and concrete[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(4): 1020-1029. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201804025.htm
[15] 胡贺松, 陈晓斌, 唐孟雄, 等. 随钻跟管桩桩-土接触面作用机制大型直剪试验研究[J]. 岩土力学, 2018, 39(12): 4325-4334. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201812005.htm HU Hesong, CHEN Xiaobin, TANG Mengxiong, et al. Investigation on shearing failure mechanism for DPC pile-soil interface in large-scale direct shear tests[J]. Rock and Soil Mechanics, 2018, 39(12): 4325-4334. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201812005.htm
[16] CLOUGH G W, DUNCAN J M. Finite element analyses of retaining wall behavior[J]. Journal of the Soil Mechanics and Foundations Division, 1971, 97(12): 1657-1673.
[17] FARHADI B, LASHKARI A. Influence of soil inherent anisotropy on behavior of crushed sand-steel interfaces[J]. Soils and Foundations, 2017, 57(1): 111-125.
[18] LIU J W, CUI L, ZHU N, et al. Investigation of cyclic pile-sand interface weakening mechanism based on large-scale CNS cyclic direct shear tests[J]. Ocean Engineering, 2019, 194: 106650.
[19] 成浩, 王晅, 张家生, 等. 颗粒粒度与级配对碎石料与结构接触面剪切特性的影响[J]. 中南大学学报(自然科学版), 2018, 49(4): 925-932. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201804021.htm CHENG Hao, WANG Xuan, ZHANG Jiasheng, et al. Effects of particle size and gradation on shear behavior of interface between crushed stone and structure[J]. Journal of Central South University (Science and Technology), 2018, 49(4): 925-932. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201804021.htm
[20] 杨忠平, 蒋源文, 李诗琪, 等. 土石混合体-基岩界面剪切力学特性试验研究[J]. 岩土工程学报, 2020, 42(10): 1947-1954. doi: 10.11779/CJGE202010021 YANG Zhongping, JIANG Yuanwen, LI Shiqi, et al. Experimental study on shear mechanical properties of soil-rock mixture-bedrock interface[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1947-1954. (in Chinese) doi: 10.11779/CJGE202010021
[21] 刘恒. 非水反应高聚物注浆材料锚固特性研究[D]. 郑州: 郑州大学, 2017. LIU Heng. Research on Anchoring Characters of Non-water Reacted Polymer Grouting Materials[D]. Zhengzhou: Zhengzhou University, 2017. (in Chinese)
-
期刊类型引用(14)
1. 邹俊杰,尹志勇,彭蓬,吴沂洋,谭鹏强,高攀. 橡胶砂最小干密度测定及其经验公式. 建材技术与应用. 2024(03): 28-32 . 百度学术
2. 孙小宸,宿利平,刘洋. 基于液化势指标的砂土抗液化评价方法及应用. 工程地质学报. 2023(02): 671-679 . 百度学术
3. 施勇,贾献林,吕国儿,李宝建. 钙质砂最大最小孔隙比的确定及其影响因素分析. 地基处理. 2023(04): 293-298 . 百度学术
4. 刘军,苗现国,许军龙,卓慧英,牛天娇. 砂土相对密度试验研究和探讨. 工程勘察. 2023(09): 26-34 . 百度学术
5. 瞿茹,朱长歧,刘海峰,王天民,马成昊,王星. 珊瑚砂界限干密度确定方法的比较研究. 岩土力学. 2023(S1): 461-475 . 百度学术
6. 李志鹏,糟凯龙,何建新,杨海华. 粉煤灰掺量对改良沙漠土毛细水上升规律的影响分析. 粉煤灰综合利用. 2022(01): 87-92 . 百度学术
7. 李识博,代俊芳,吴江伟,肖乐乐. 考虑粒组分类影响的最小孔隙比分布及模型验证. 岩土力学. 2022(S2): 193-204 . 百度学术
8. 戴仁辉,李明东,陈士军,易进翔,高玉峰. 不同粒度粗粒的极限孔隙比和破碎特征. 建筑材料学报. 2021(02): 427-431+439 . 百度学术
9. 王明年,江勇涛,张艺腾,于丽,曾正强. 渗透侵蚀下砂性土细颗粒流失率预测方法. 地下空间与工程学报. 2021(06): 1704-1712 . 百度学术
10. 刘勇,廖燕. 动荷载作用下砂土强度弱化的试验研究. 四川建筑科学研究. 2020(01): 65-70 . 百度学术
11. 赵文丽. 黏粒含量对砂土抗剪强度影响的试验研讨. 建材与装饰. 2020(18): 203+205 . 百度学术
12. 王明年,江勇涛,张艺腾,于丽,曾正强. 渗流作用下颗粒土起动临界坡降研究. 地下空间与工程学报. 2020(S1): 87-93 . 百度学术
13. 吴加武. 挤密砂桩在直立式护岸抗液化处理中的应用. 土工基础. 2019(01): 27-30+34 . 百度学术
14. 黎亮,杨晓松,李宏伟. 南疆绿洲区含残膜砂土击实特性试验研究. 公路. 2019(11): 199-203 . 百度学术
其他类型引用(14)
-
其他相关附件