Typesetting math: 100%
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

枢纽工程重要构筑物(群)与地质环境互馈作用机制与控制技术

汪小刚, 陈益峰, 卢波, 王玉杰, 徐卫亚, 杨强, 张希巍

汪小刚, 陈益峰, 卢波, 王玉杰, 徐卫亚, 杨强, 张希巍. 枢纽工程重要构筑物(群)与地质环境互馈作用机制与控制技术[J]. 岩土工程学报, 2022, 44(7): 1220-1238. DOI: 10.11779/CJGE202207004
引用本文: 汪小刚, 陈益峰, 卢波, 王玉杰, 徐卫亚, 杨强, 张希巍. 枢纽工程重要构筑物(群)与地质环境互馈作用机制与控制技术[J]. 岩土工程学报, 2022, 44(7): 1220-1238. DOI: 10.11779/CJGE202207004
WANG Xiao-gang, CHEN Yi-feng, LU Bo, WANG Yu-jie, XU Wei-ya, YANG Qiang, ZHANG Xi-wei. Control technology and interaction mechanism between important structures of multi-purpose projects and geological environment[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(7): 1220-1238. DOI: 10.11779/CJGE202207004
Citation: WANG Xiao-gang, CHEN Yi-feng, LU Bo, WANG Yu-jie, XU Wei-ya, YANG Qiang, ZHANG Xi-wei. Control technology and interaction mechanism between important structures of multi-purpose projects and geological environment[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(7): 1220-1238. DOI: 10.11779/CJGE202207004

枢纽工程重要构筑物(群)与地质环境互馈作用机制与控制技术  English Version

基金项目: 

国家重点研发计划项目 2018YFC1508500

详细信息
    作者简介:

    汪小刚(1965—)男,工学博士,正高级工程师(二级),博士生导师,全国水利系统十大青年科技英才,百千万人才工程国家级人选,国家有突出贡献的中青年专家,享受政府特殊津贴专家,现任中国水利水电科学研究院副院长,兼任中国大坝学会副理事长、中国水力发电工程学会副理事长及《岩土工程学报》副主编。工作35年以来,主持或参与了国家“八五”至“十三五”科技攻关、国家“973”、国家自然科学基金、水利部重点科研、水利部948项目等50余项科研项目;负责或参与完成了三峡、小浪底、龙滩、李家峡、锦屏和小湾等几十个国家重大水电工程关键技术问题的技术咨询工作。紧密结合水利水电工程建设重大需求,围绕岩体工程力学参数取值方法、高边坡稳定极限分析理论、预应力锚固机理及新型锚固结构型式、复杂条件下高土石坝筑坝技术、大型输水隧洞新型衬砌结构型式、水利水电工程安全预警预报方法和技术等方面进行了深入系统的研究,取得的多项创新性成果已在工程建设中得到了广泛应用,取得了显著的社会经济效益,为我国水利水电工程发展做出了突出贡献。获国家科技进步一等奖、二等奖各1项、省部级科技进步特等奖2项、一等奖6项、二等奖8项,国家发明专利30余项,发表论文130余篇,主编和参编学术专著10余部。E-mail:wangxg@iwhr.com

    通讯作者:

    王玉杰, E-mail: wangyj@iwhr.com

  • 中图分类号: TU43

Control technology and interaction mechanism between important structures of multi-purpose projects and geological environment

  • 摘要: 紧密结合中国重大水利水电工程长期安全调控的迫切需求,深入研究开挖卸荷、水库蓄水、水位交变、泄洪雨雾及库区气候变化条件下,库区及枢纽区渗流场、应力场和参数场(岩土力学性能参数、加固系统功能指标)的动态演化和耦合作用机理,建立并形成了地质环境变化趋势预测的理论和方法;系统研究不同构筑物(库岸边坡、高坝岩基和大型地下洞室群)与地质环境的互馈作用机制,完善并发展了基于地质环境演化的构筑物工作性状动态分析方法和调控技术,研发了与变化环境相适应的加固系统(特别是锚固体系)长效延寿成套装备与工法,并在实际工程中得到示范应用。
    Abstract: Closely inline with the urgent needs of long-term safety regulation of major water conservancy and hydropower projects in China, the dynamic evolution and coupling mechanism of seepage field, stress field and parameter field (geotechnical mechanical performance parameters and functional indexes of reinforcement system) in the reservoir area and project area are deeply studied under the conditions of excavation and unloading, reservoir water storage, water level alternation, flood discharge rain and fog and climate change in the reservoir area, and the theory and method for predicting the change trend of geological environment are established and formed. The mutual feeding mechanism between different structures (reservoir bank slope, high dam rock foundation and large underground cavern group) and the geological environment is systematically studied, the dynamic analysis method and regulation technology of working properties of structures are improved and developed based on the evolution of geological environment, and the complete set of long-term life extension equipment and construction method of reinforcement system (especially anchorage system) adapted to the changing environment is developed, and it is demonstrated and applied in practical engineering.
  • 生活垃圾焚烧能缓解城市土地资源日益紧张的压力,已逐渐成为许多城市生活垃圾的首选处置方式。垃圾焚烧产生的飞灰(MSWIFA)[1]因富集多种重金属而被列为危险废物。许多国家都将飞灰都列入危险废物管理名录,需要进行无害化处理处置,才能进入卫生填埋场。

    固化稳定化技术一直以来被认为是处理重金属污染固体废弃物的最佳途径,也是国内外广泛使用的飞灰无害化处理手段[2]。近年来,土壤聚合物(简称土聚物)作为一种低碳胶凝材料,在重金属固化稳定化领域逐渐受到关注。以固体废弃物为原料开发土聚物固化重金属污染废弃,可同时实现工业废弃物的资源化和重金属污染治理的双重目标。赤泥作为大宗固体废弃物,具备一定活性态Si和Al,成为制备土聚物的研究热点[3-4]。煤矸石激发可产生活性偏高岭土,调节体系Si/Al比,可以作为制备土聚物的辅料。固体废弃物的活性较低,因此往往需要对赤泥进行高温煅烧处理提高其活性[5]。煅烧能耗较高,限制了赤泥的利用,鲜有直接针对非煅烧的原料进行激发的研究。

    本文采用赤泥和煤矸石为原料,以机械力化学的方式制备土聚物前驱体,采用水玻璃和NaOH激发制备土聚物,并用于MSWIFA中重金属的固化稳定化,研究固化体不同龄期抗压强度变化、重金属浸出毒性及形态分布特征,揭示该土聚物固化重金属的规律,并借助固化体物相分析、化学键分析及微观结构组成分析探究其材料固化稳定化机制,为赤泥-煤矸石基土聚物固化稳定化飞灰提供数据支撑和理论参考。

    赤泥(拜耳法,RM)取自中铝集团山东分公司,煤矸石(CG)取自山西省阳泉煤业集团,工业水玻璃(工业纯)及氢氧化钠颗粒(分析纯)购于国药集团。两种垃圾焚烧飞灰分别取自于重庆(M1)和广东(M2)某生活垃圾焚烧厂。原材料的化学组成见表1。赤泥主要化学组成为Al2O3、SiO2、Na2O及Fe2O3,占比超过70%,适合制备硅铝基土聚物;煤矸石中Al2O3和SiO2占比接近70%,同时还含有11.37%的碳;两种飞灰都属于高钙贫硅铝体系,富含氯化物和硫酸盐。

    表  1  原材料的的化学组成
    Table  1.  Chemical composition of raw martials (%)
    主要成分RMCGM1M2
    Na2O10.850.337.269.07
    MgO00.401.301.53
    Al2O320.2622.211.972.18
    SiO212.8345.698.223.35
    P2O50.170.120.770.45
    SO30.603.067.259.04
    K2O007.105.58
    CaO0.870.9833.4538.64
    Fe2O333.395.491.420.69
    Cl0024.4528.32
    烧失量LOI12.2819.824.072.68
    下载: 导出CSV 
    | 显示表格

    分别采用消解ICP元素分析和TCLP法测试飞灰中重金属含量分布和浸出特性,试验结果见表2。飞灰M1特征污染重金属是Cr,Zn和Cd;M2特征污染重金属是Pb和Cd。因此,选取Pb、Cr、Zn、Cd为飞灰固化稳定化研究的特征重金属。

    表  2  两种垃圾焚烧飞灰重金属污染特征
    Table  2.  Heavy metal pollution characteristics of two FA samples
    重金属总量/(mg·kg-1)浸出浓度/(mg·L-1)
    M1M2M1M2Limit*
    Pb88.41.05×1030.081.350.25
    Cr3.98×10338535.12.354.5
    Zn1.40×1048.59×10313597.2100
    Cd2302031.010.760.15
    注:*生活垃圾填埋场污染控制标准GB 16889—2008。
    下载: 导出CSV 
    | 显示表格

    土聚物制备工艺[6]为赤泥和煤矸石(8∶2)在高速行星磨中以2000 r/min混磨5 min后,加入3.4 mol/L水玻璃与5 mol/L NaOH溶液共混溶液(1.66∶1)作为碱激发剂;液固比为0.4,倒入2 cm×2 cm×2 cm试模中成型。浆体预养护条件为80℃恒温养护24 h,将固化体脱模后,继续标准养护至7,14,28 d,土聚物试样编号为R8G2。在赤泥-煤矸石8∶2共混体中直接投加质量为0.5%,1%,1.5%及2%的Pb(NO3)2和K2Cr2O7粉末,编号为F1、F2、F3、F4和F5、F6、F7、F8,进行土聚物自稳定性试验,其他过程与土聚物制备工艺相同,采用TCLP浸出毒性检测方法和Tessier五步连续提取法[7]研究不同龄期固化体的重金属固化效果。将重金属i浸出系数Lri定义为

    Lri=TCLPi(g)i(g)×100% (1)

    以不添加激发剂的赤泥-煤矸石共混前驱体R8G2作为对照组试验,添加同样的重金属进行浸出试验。

    两种垃圾焚烧飞灰(M1与M2)与土聚物前驱体的掺合比设置5个水平(8∶2,6∶4,5∶5,4∶6,2∶8),试样编号为M1-1、M1-2、M1-3、M1-4、M1-5和M2-1、M2-2、M2-3、M2-4、M2-5,其他过程与土聚物制备工艺相同,测试固化体各期抗压强度和TCLP浓度。分别采用X射线衍射仪(D8 Advance)、扫描电镜(JSM-5610LV)和傅里叶变换红外光谱仪(Nexus)测试原料和固化体的矿物组成、形貌及官能团。

    表3给出了土聚物前驱体和土聚物固化体中重金属Pb和Cr的浸出浓度及浸出系数。从表3中浸出系数可与看出,未碱激发的土聚物前驱体也可捕集部分重金属。这可能是因为原材料粉末颗粒在机械力化学作用下微细化和凝胶化,产生晶体缺陷或畸变[8],部分重金属离子可以吸附在前驱体表面缺陷点位上,或者与胶凝活化的物质发生化学反应,从而难以浸出。

    表  3  土聚物前驱体及土聚物自固化的重金属Pb和Cr的浸出浓度
    Table  3.  Leaching concentrations of heavy metals Pb and Cr out of precursor and blend samples after TCLP tests
    重金属样品 编号重金 属含量/(mg·kg-1)浸出浓度/(mg·L-1)浸出系数/%
    前驱体土聚物前驱体土聚物
    7 d14 d28 d7 d14 d28 d
    PbF1315642.07±1.26610.11±0.303未检出未检出26.686.4100
    F26286125.82±2.15027.15±1.05212.16±0.1931.04±0.05540.068.643.870.33
    F39416194.12±1.62041.26±1.28030.93±0.2101.84±0.02141.268.776.570.39
    F412546317.20±2.87541.27±2.32640.01±1.5203.98±0.11550.606.586.380.63
    CrF5242340.08±0.0859.25±0.1272.03±0.0100.51±0.00245.5810.522.310.58
    F6419391.76±0.76211.44±0.0853.15±0.0221.87±0.03264.077.992.201.31
    F75963132.71±1.34022.30±0.05012.15±0.6504.99±0.26566.8511.236.122.51
    F87733213.40±1.26526.83±0.14019.57±0.43212.69±0.03584.0910.577.715.00
    下载: 导出CSV 
    | 显示表格

    土聚物与其前驱体相比,重金属Pb和Cr的浸出系数显著降低。各土聚物试样在不同龄期重金属的浸出系数均低于10%。养护28 d后,各试样重金属Pb和Cr的浸出系数分别低于1%和5%。

    R8G2前驱体及土聚物中重金属形态分布见图1。离子交换态和碳酸盐结合态重金属在酸性环境下可能向环境中释放,可称为有效态;可还原态和硫酸盐结合态与渣态较为稳定,酸性环境中较难浸出,可称为稳定态。从图1(a)中可以看出,随着土聚物养护龄期的增长,F2和F6中有效态Pb和Cr逐渐向稳定态转变。与Cr相比,土聚物中的Pb在稳定态分布的比例更高,因此浸出系数也更低。土聚物中重金属的稳定态比例随着重金属掺量的增加而增加(图1(b))。当Cr盐掺量高于1%时,离子交换态和碳酸盐结合态的Cr显著增加。因此与Pb相比,Cr更易从土聚物中浸出[9]

    图  1  F2和F6试样前驱体和土聚物不同龄期及前驱体和土聚物养护28 d试样中重金属分布特征
    Figure  1.  Chemical speciation of heavy metals in F2/F6 precursor and blend samples at different curing ages, and F1-F8 precursor and blend samples curing for 28 d

    重金属Pb和Cr添加的土聚物XRD见图2。F2试样中硅铝酸钠和霞石因参与土聚物反应[10],其特征峰随着养护龄期的增长逐渐消失。Pb进入土聚物结构中被固化[11],含Pb的结晶物质峰消失。当Pb盐的添加量增加到1.5%时(F3),土聚物固化体矿物相中出现了难溶物Pb3SiO5的衍射峰,表明Pb也可以难溶的硅酸盐形态被固化稳定化[12]。Cr盐添加的土聚物(图2(b))固化过程与Pb类似。然而,当Cr盐的添加量增加到1.5%时(F7),土聚物固化体矿物相中出现了Na2CrO4的衍射峰,尽管添加的是重铬酸盐,在合适的Eh-pH条件下,Cr2O27会转化成Cr2O24[13],在养护过程中与碱激发剂中的Na+离子结合析出Na2CrO4。Na2CrO4属于易溶盐,是有效态Cr,容易浸出。

    图  2  土聚物试样自固化重金属Pb和Cr的XRD图
    Figure  2.  XRD patterns of geopolymers containing Pb and Cr

    固化体TCLP毒性浸出试验结果见图3。随着龄期和土聚物掺量增加,固化体中4种重金属浸出浓度均呈下降趋势。飞灰固化体养护28 d后,当土聚物掺量≥50%时,各固化体重金属浸出浓度均能达到《生活垃圾填埋场污染控制标准GB16889—2008》的要求。当土聚物掺量≥60%时,各固化体中重金属的浸出系数都低于0.4%。M1和M2固化体中特征重金属的浸出系数Lri从小到大分别为Zn<Cr<Cd和Pb< Zn<Cd,综合来看,重金属浸出系数依次为Pb<Zn< Cr<Cd。

    图  3  固化体中重金属的浸出浓度
    Figure  3.  Concentrations of heavy metals leaching from S/S solid

    土聚物-飞灰固化体抗压强度试验结果见图4。固化体的抗压强度随着龄期的增加而增大,随着飞灰掺量的增加而减小。因为飞灰掺入后会影响体系的Si/Al比和Na/Al比,从而影响土聚物缩聚反应。此外,飞灰中氯化物也会阻碍固化体强度的发展。值得注意的是,飞灰M2固化体强度大约是飞灰M1同土聚物掺量同龄期固化体强度的两倍,表明飞灰自身也有一定活性,可参与水化反应,有利强度发展。

    图  4  土聚物固化体不同龄期抗压强度的变化
    Figure  4.  Development of compressive strength of the geopolymeric S/S solid samples curing for 7, 14, 28 d

    飞灰原样及各固化体养护28 d的XRD见图5

    图  5  飞灰原样和土聚物固化体的XRD图谱
    Figure  5.  XRD patterns of MSWI fly ash and S/S solid samples

    两种飞灰的主要矿物相均为石英、碳酸钠、钙长石、氯化钾和氯化钠。土聚物中主要矿物相为原材料中未参与反应的赤铁矿、石英、霞石、硅铝酸钠以及无定型态土聚物(22°~40°之间的驼峰)[14]。从XRD中可以看出,土聚物掺量≤40%,液态Si源趋向与飞灰中的CaSO4反应生成C-S-H凝胶,原料中活性Al源与离子态的Ca2+反应生成CaAl(OH)3·H2O;随着土聚合掺量增加,活性Al源和活性Si源趋向于再聚合形成无定型态土聚物。

    图6是试样M1-3和M2-3试样不同龄期的红外光谱曲线。位于450~470 cm-1和960~1005 cm-1附近的特征峰分别是[SiO4]4-或[AlO]5-四面体中Si-O-Si(Al)的伸缩和不对称弯曲振动峰,常用来确定无定型物质的形成[15]。随着龄期的增长,M1-3和M2-3两个试样的Si-O-Si(Al)伸缩及弯曲振动峰均逐渐加强,表明体系中生成的硅铝酸盐结构不断完善。M2-3试样养护28天后Si-O-Si(Al)弯曲振动峰较M1-3更加尖锐,表明M2-3发生了从无定形态土聚物到沸石结构的转变。

    图  6  M1-3和M2-3试样不同养护龄期红外光谱
    Figure  6.  FT-IR patterns of M1-3 and M2-3 curing for 7, 14, 28 d

    飞灰M1和M2、土聚物及其飞灰固化体M1-3和M2-3的微观形貌见图7

    图  7  原飞灰及固化体M1-3和M2-3的扫描电镜图
    Figure  7.  SEM images of fly ashes and geopolymeric S/S solids

    图7(c)中致密体(Spot 1)主要由Na、Al、Si和O组成,是土聚物的主要构成元素[16];其表面镶嵌的颗粒(Spot 2)主要组成元素为Fe和O及微量的Na、Al、Si和Ti,可能是赤泥中赤铁矿微粒,证明土聚物对其他矿物具有包裹作用。图7(d)7(e)分别为M1-3和M2-3固化体养护28 d后的微观形貌。原始飞灰M1(图7(a))和M2(图7(b))中松散团聚结构的颗粒物已经镶嵌于土聚物的网状结构中。M2-3的结构较M1-3更为致密,因此M2-3具有更高的强度和更好的重金属稳定化效果。

    (1)赤泥-煤矸石共混形成的土聚物结构能有效固化重金属Pb和Cr。Pb还能与土聚物前驱体碱溶过程的活性Si反应生成难溶的Pb3SiO5被固定下来。

    (2)土聚物-飞灰固化体中飞灰掺量在40%以内时,可满足《生活垃圾填埋场污染控制标准》GB16889—2008,对飞灰中重金属的固化效果为Pb>Zn> Cr>Cd。当土聚物掺量大于60%时,飞灰固化体养护28 d后,重金属的固化率都高于99.6%。

    (3)赤泥-煤矸石共混土聚物对于飞灰中重金属的固化稳定化,除了无定型态土聚物的稳定化作用以外,飞灰M2中活性组分也能在碱激发作用下水化生成C-S-H凝胶和沸石相,对飞灰中重金属起到包覆和吸附的作用,使得飞灰中重金属由有效态向稳定态进行转变,进一步降低其浸出浓度。

  • 图  1   课题与科学问题及课题之间的逻辑关系

    Figure  1.   Corresponding relationship between research subjects and scientific problems

    图  2   岩石水岩耦合试验

    Figure  2.   Water-rock interaction test of rock samples

    图  3   高渗压条件下岩石三轴蠕变试验

    Figure  3.   Triaxial creep test of rock under high water pressure

    图  4   结构面水岩耦合试验

    Figure  4.   Water-rock interaction tests on rock discontinuities

    图  5   逐级增加水压结构面剪切位移时间曲线

    Figure  5.   Variation of shear displacement with time by increasing the water pressure step by step

    图  6   结构面水理化特性试验装置和结果

    Figure  6.   Test devices and results for hydrophysicochemical properties of rock discontinuities

    图  7   裂隙岩体现场水岩耦合试验

    Figure  7.   Water-rock interaction tests on joint rock in field

    图  8   锚索现场开挖检测

    Figure  8.   Anchor excavation at several projects

    图  9   室内拟环境加速腐蚀试验装置

    Figure  9.   Simulated environment accelerated corrosion test devices in laboratory

    图  10   锚索加速腐蚀试验结果

    Figure  10.   Accelerated corrosion test results for anchor samples

    图  11   内外锚头防腐结构

    Figure  11.   Corrosion preventation structures for inner and outer anchor heads

    图  12   压胀式楔形内锚头结构及受力特征

    Figure  12.   Structure and mechanical characteristics of wedge anchor head

    图  13   新型超限荷载变形调整预应力锚索内锚头

    Figure  13.   New type of anchor head for deformation adjustment under excessive load

    图  14   新型应力监测结构设计及试验验证

    Figure  14.   Design and test verification of new stress monitoring structure

    图  15   西南深切峡谷区岩体渗透系数随埋深分布规律

    Figure  15.   Variation of hydraulic conductivity of rock masses with depth in deep-incised valleys, Southwest China

    图  16   溪洛渡水电站近坝区玄武岩渗透系数的演化规律

    Figure  16.   Variation of hydraulic conductivity for near-bank basaltic rocks at Xiluodu Hydropower Station

    图  17   地下水分层现象与脉状地下水运动特征

    Figure  17.   Multiple water tables and groundwater flow behavior along backbone structures

    图  18   白鹤滩水电站坝址区水文地质环境演化特征

    Figure  18.   Variation of hydrogeological environment at the site of Baihetan Hydropower Station

    图  19   预测饱和裂隙岩体有效应力系数的经验模型

    Figure  19.   Empirical model for predicting effective stress coefficient of saturated fractured rock mass

    图  20   渗流–应力耦合损伤力学模型

    Figure  20.   Micromechanical damage model for hydro-mechanical coupling

    图  21   岩体渗流–应力–参数耦合数值模拟方法框图

    Figure  21.   Diagram of seepage-stress-parameter coupled numerical simulation method for rock mass

    图  22   溪洛渡水电站三维渗流场动态反馈分析

    Figure  22.   Dynamic feedback analysis of 3D seepage field of Xiluodu Hydropower Station

    图  23   库岸边坡渗流应力耦合损伤力学模型

    Figure  23.   Micromechanical damage model for hydro-mechanical coupling of reservoir bank

    图  24   多尺度分析计算流程

    Figure  24.   Flow chart of multiscale analysis

    图  25   基于多尺度和传统强度折减方法结果对比

    Figure  25.   Comparison of results by multi-scale and traditional strength reduction methods

    图  26   溪洛渡坝肩边坡变形机理分析

    Figure  26.   Analysis of deformation mechanism of valley amplitude of Xiluodu

    图  27   锦屏一级坝基变形

    Figure  27.   Deformations of dam foundation of Jinping No.1

    图  28   溪洛渡坝基变形

    Figure  28.   Deformations of dam foundation of Xiluodu

    图  29   两种变形模式的模拟方法

    Figure  29.   Simulation methods for two deformation modes

    图  30   白鹤滩拱坝上游坝面屈服区图

    Figure  30.   Yield zone map of upstream of Baihetan Arch Dam

    图  31   不平衡力与声发射和拱坝开裂破坏的关系

    Figure  31.   Relationship among unbalanced force, acoustic emission and cracking failure of arch dam

    图  32   孟底沟拱坝下游坝面屈服区图

    Figure  32.   Yield zone map of downstream of Mengdigou Arch Dam

    图  33   白鹤滩拱坝下游坝面屈服区图

    Figure  33.   Yield zone map of downstream of Baihetan Arch Dam

    图  34   地下洞室群锚杆受力随时间的变化过程

    Figure  34.   Variation of bolt stress with time in underground caverns

    图  35   地下洞室群围岩变形与锚杆受力变化规律

    Figure  35.   Variation of bolt stress and rock deformation in underground caverns

    图  36   高压引水隧洞工程实际运行工作性状模拟分析

    Figure  36.   Simulation analysis of actual operation and working characteristics of high-pressure diversion tunnel

    图  37   高内外水作用下自适应衬砌结构图

    Figure  37.   Diagram of an adaptive lining structure under high internal and external water pressures

    图  38   高内外水自适应衬砌模型试验

    Figure  38.   Model tests on adaptive lining structure under high internal and external water pressures

    表  1   锚头结构暴露分级标准

    Table  1   Exposure classification of anchor head

    等级 分级标准
    A 包裹层完整
    B 保护帽外露
    C 锚具和垫板有1项外露
    D 锚具和垫板有2项外露
    下载: 导出CSV

    表  2   锚头结构腐蚀分级标准

    Table  2   Classification of corrosion degree of anchor head

    等级 分级标准
    0 没有锈蚀,或锈蚀情况未知
    1 轻微锈蚀,锈斑部分覆盖表面
    2 明显锈蚀,锈斑全面覆盖表面
    3 严重锈蚀,有锈斑,表面因锈蚀不平整
    4 严重锈蚀,锈蚀深入基体,呈层状或有剥落现象
    下载: 导出CSV

    表  3   预应力锚索寿命预测模型计算结果

    Table  3   Calculated results by life prediction model for prestressed anchor

    实际调研情况和计算结果 失效年限/a
    边坡加固工程的锚索失效年限 12.0
    模型计算结果 12.0(L=8 m)
    11.3(L=24 m)
    下载: 导出CSV
  • [1]

    FENG X T, ZHAO J, ZHANG X W, et al. A novel true triaxial apparatus for studying the time-dependent behaviour of hard rocks under high stress[J]. Rock Mechanics and Rock Engineering, 2018, 51(9): 2653–2667. doi: 10.1007/s00603-018-1516-z

    [2]

    WU A Q, FAN L, FU X, et al. Design and application of hydro-mechanical coupling test system for simulating rock masses in high dam reservoir operations[J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 140: 104638. doi: 10.1016/j.ijrmms.2021.104638

    [3] 赵志宏. 岩石裂隙水–岩作用机制与力学行为研究[J]. 岩石力学与工程学报, 2021, 40(增刊2): 3063–3073. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2021S2007.htm

    ZHAO Zhi-hong. Study on water-rock interaction mechanisms and mechanical behaviors of single rock fractures[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(S2): 3063–3073. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2021S2007.htm

    [4]

    DOU Z H, GAO T Y, ZHAO Z H, et al. Effect of immersion duration on shear behavior of granite fractures[J]. Rock Mechanics and Rock Engineering, 2021, 54(9): 4809–4823. doi: 10.1007/s00603-021-02534-8

    [5]

    DOU Z H, GAO T Y, ZHAO Z H, et al. The role of water lubrication in critical state fault slip[J]. Engineering Geology, 2020, 271: 105606. doi: 10.1016/j.enggeo.2020.105606

    [6]

    SHANG D L, ZHAO Z H, DOU Z H, et al. Shear behaviors of granite fractures immersed in chemical solutions[J]. Engineering Geology, 2020, 279: 105869. doi: 10.1016/j.enggeo.2020.105869

    [7]

    FAN L, YU M W, WU A Q, et al. Study on the deformation characteristics of fractured basalt under coupling of three-dimensional stress and water pressure cycling[J]. IOP Conference Series: Earth and Environmental Science, 2021, 861(2): 022039. doi: 10.1088/1755-1315/861/2/022039

    [8]

    FAN L, YU M W, WU A Q, et al. Developing an in situ, hydromechanical coupling, true triaxial rock compression tester and investigating the deformation patterns of reservoir bank slopes[J]. Quarterly Journal of Engineering Geology and Hydrogeology, 2021: qjegh2021-43.

    [9]

    WANG Y J, SUN X S, REN A W. Investigations of rock anchor corrosion and its influence factors by exhumations in four typical field sites[J]. Engineering Failure Analysis, 2019, 101: 357–382. doi: 10.1016/j.engfailanal.2019.03.022

    [10]

    SUN X S, WANG Y J, YIN T, et al. New system for investigating the corrosion of existing rock anchors[J]. IOP Conference Series: Earth and Environmental Science, 2021, 861(7): 072117. doi: 10.1088/1755-1315/861/7/072117

    [11] 王玉杰, 尹韬, 孙兴松, 等. 丰满老坝加固预应力锚索服役近30年后性能评价研究[J]. 岩石力学与工程学报, 2022, 41(1): 62–69. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202201005.htm

    WANG Yu-jie, YIN Tao, SUN Xing-song, et al. Performance evaluation of prestressed anchors embedded in old Fengman Dam after nearly 30 years service[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(1): 62–69. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202201005.htm

    [12]

    YIN T, SUN X S, WANG Y J, et al. Corrosion investigation of rock anchors served over 10 years in underground powerhouse of a hydropower station[J]. Advances in Materials Science and Engineering, 2022: 4905010.

    [13]

    WANG Y J, YIN T, SUN X S, et al. Review of corrosion test methods of prestressed anchor[J]. IOP Conference Series: Earth and Environmental Science, 2021, 861(2): 022060. doi: 10.1088/1755-1315/861/2/022060

    [14]

    YIN T, SUN X S, WANG Y J, et al. Corrosion characteristics of anchor cables in electrolytic corrosion test and the applicability of the test method in study of anchor cable corrosion[J]. Advances in Civil Engineering, 2021, 2021: 6695288.

    [15] 孙彦鹏. 楔形压胀式内锚头作用机理及应用研究[D]. 邯郸: 河北工程大学, 2020.

    SUN Yan-peng. Study on the Action Mechanism and Application of Wedge-Shaped Expansion Type Internal Anchor Head[D]. Handan: Hebei University of Engineering, 2020. (in Chinese)

    [16] 孙彦鹏, 凌永玉, 林兴超, 等. 新型预应力锚索内部监测结构试验研究[J]. 岩土工程学报, 2020, 42(增刊2): 226–230. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2020S2040.htm

    SUN Yan-peng, LING Yong-yu, LIN Xing-chao, et al. Experimental study on internal monitoring structure of a new prestressed anchor cable[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S2): 226–230. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2020S2040.htm

    [17]

    CHEN Y F, LING X M, LIU M M, et al. Statistical distribution of hydraulic conductivity of rocks in deep-incised valleys, Southwest China[J]. Journal of Hydrology, 2018, 566: 216–226. doi: 10.1016/j.jhydrol.2018.09.016

    [18] 陈益峰. 水利工程渗流分析理论与实践[M]. 北京: 科学出版社, 2022.

    CHEN Yi-feng. Seepage Analysis in Hydraulic Engineering: Theory and Practice[M]. Beijing: Science Press, 2022 (in Chinese)

    [19]

    CHEN Y F, ZENG J, SHI H T, et al. Variation in hydraulic conductivity of fractured rocks at a dam foundation during operation[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2021, 13(2): 351–367. doi: 10.1016/j.jrmge.2020.09.008

    [20]

    JIA C J, XU W Y, WANG S S, et al. Experimental analysis and modeling of the mechanical behavior of breccia lava in the dam foundation of the Baihetan Hydropower Project[J]. Bulletin of Engineering Geology and the Environment, 2019, 78(4): 2681–2695. doi: 10.1007/s10064-018-1228-3

    [21]

    WANG H L, XU W Y, JIA C J, et al. Experimental research on permeability evolution with microcrack development in sandstone under different fluid pressures[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142(6): 04016014. doi: 10.1061/(ASCE)GT.1943-5606.0001462

    [22]

    MENG Q X, WANG H L, XU W Y, et al. Multiscale strength reduction method for heterogeneous slope using hierarchical FEM/DEM modeling[J]. Computers and Geotechnics, 2019, 115: 103164. doi: 10.1016/j.compgeo.2019.103164

    [23]

    SHI H J, XU W Y, YANG L L, et al. Investigation of influencing factors for valley deformation of high arch dam using machine learning[J]. European Journal of Environmental and Civil Engineering, 2020: 1–12.

    [24]

    SUN M C, XU W Y, WANG H L, et al. A novel hybrid intelligent prediction model for valley deformation: a case study in Xiluodu Reservoir region, China[J]. Computers, Materials & Continua, 2020, 66(1): 1057–1074.

    [25]

    LI B, XU J R, XU W Y, et al. Mechanism of valley narrowing deformation during reservoir filling of a high arch dam[J]. European Journal of Environmental and Civil Engineering, 2020: 1–11.

    [26]

    WANG X W, XU J R, XUE L J, et al. Study on deformation of abutment and the influence on high arch dam during impoundment[J]. IOP Conference Series: Earth and Environmental Science, 2021, 861(7): 072068. doi: 10.1088/1755-1315/861/7/072068

    [27] 钟大宁. 高拱坝谷幅变形机制及谷幅变形对大坝的影响研究[D]. 北京: 清华大学, 2019.

    ZHONG Da-ning. Study on the Mechanism of Valley Width Deformation and Its Effects on the Arch Dam[D]. Beijing: Tsinghua University, 2019 (in Chinese)

    [28] 杨强, 王守光, 李超毅, 等. 岩体结构变形破坏的内在驱动力–不平衡力[J]. 工程地质学报, 2020, 28(2): 202–210. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202002002.htm

    YANG Qiang, WANG Shou-guang, LI Chao-yi, et al. Internal driving force of deformation and failure of rock mass structure-unbalanced force[J]. Journal of Engineering Geology, 2020, 28(2): 202–210. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202002002.htm

    [29]

    WANG S G., LIU Y R., ZHOU H W., et al. Experimental study on failure process of arch dam based on acoustic emission technique[J]. Engineering Failure Analysis, 2019, 97: 128–144. doi: 10.1016/j.engfailanal.2019.01.013

    [30]

    TAO Z F, LIU Y R, YANG Q, et al. Study on the nonlinear deformation and failure mechanism of a high arch dam and foundation based on geomechanical model test[J]. Engineering Structures, 2020, 207: 110287. doi: 10.1016/j.engstruct.2020.110287

    [31]

    WANG X G., LIU L P., FU R Z., et al. Newly developed pressure adaptable concrete lining for high pressure hydraulic tunnels[J]. Tunnelling and Underground Space Technology, 2020, 105: 103570. doi: 10.1016/j.tust.2020.103570

    [32] 刘立鹏, 汪小刚, 段庆伟, 等. 高压富水地层水工隧洞衬砌外水压力确定与应对措施[J/OL]. 岩土工程学报: 1-9[2022-03-05]. http://kns.cnki.net/kcms/detail/32.1124.Tu.20211228.1528.011.html, 2022.

    LIU Li-peng, WANG Xiao-gang, DUAN Qing-wei, et al. Methods to cope with external water pressure of hydraulic tunnel lining in high-pressure groundwater-rich stratum[J/OL]. Chinese Journal of Geotechnical Engineering: 1-9[2022-03-05]. http://kns.cnki.net/kcms/detail/32.1124.Tu.20211228.1528.011.html, 2022. (in Chinese)

  • 期刊类型引用(6)

    1. 周永门,周显,陈霞,范泽宇,高卓凡,邓闪闪,鲁麒,万沙. 固废基材料固化垃圾焚烧飞灰生命周期评价. 长江科学院院报. 2025(01): 208-214 . 百度学术
    2. 孙滢斐,张攀,胡敬平,杨家宽,侯慧杰. 地聚物在重金属铅固化中的研究进展. 材料导报. 2023(07): 252-258 . 百度学术
    3. 贺敏,仰宗宝,李兆超,欧志华,欧蔓丽,Tony Yang. 酸激发地质聚合物反应机理与力学性能研究进展. 硅酸盐通报. 2023(10): 3579-3593 . 百度学术
    4. 刘剑平,谢国帅,宁全纪,张继霞,谢向前,曹园章,黄亚康,白晓红. 硫酸溶液环境下赤泥基地聚合物强度特性研究. 非金属矿. 2023(05): 90-93 . 百度学术
    5. 曹家玮,曹洪雨,索崇娴,张洁雅,董晓强. 水泥-赤泥-电石渣-磷石膏固化镉污染土壤. 化工环保. 2022(04): 435-441 . 百度学术
    6. 程爱华,程岩,刘伟,李昊,李晓军. 新型固化剂固化/稳定化重金属复合污染土的机理研究. 环境科学与技术. 2021(10): 83-88 . 百度学术

    其他类型引用(20)

图(38)  /  表(3)
计量
  • 文章访问数:  243
  • HTML全文浏览量:  33
  • PDF下载量:  98
  • 被引次数: 26
出版历程
  • 收稿日期:  2022-03-04
  • 网络出版日期:  2022-09-22
  • 刊出日期:  2022-06-30

目录

/

返回文章
返回