Dynamic mechanical properties and microscopic damage characteristics of deep skarn after high-temperature treatment
-
摘要: 以深部700 m处矽卡岩为研究对象,采用分离式霍普金森压杆装置开展不同冲击气压(0.8,1.0,1.2 MPa)下常温和经历不同温度(200℃,400℃,600℃,800℃)作用后的岩石冲击压缩试验,研究深部岩石的高温动力学行为;借助SEM扫描电镜及XRD物相特征分析技术,探索矽卡岩在高温和动载作用下的微观破坏机制。结果表明:相同冲击气压作用下,随着温度的升高,矽卡岩强度劣化、延性增强;相同温度条件下,随着冲击气压的增大,矽卡岩强度和变形均增大,表现出明显的应变率效应。冲击气压增大或温度升高,矽卡岩破碎程度均越来越剧烈,破碎块度越来越小,800℃时破碎状态以颗粒较小的碎石和粉末状为主。内部组分及结构的变化是造成矽卡岩力学性能变化的主要原因,25℃~400℃矽卡岩主要为穿晶和沿晶断裂的脆性破坏;400℃~600℃为矽卡岩由脆性向塑性转化的阈值温度区间;600℃~800℃时则转变为韧窝和滑移断裂的塑性破坏。Abstract: The skarn at a depth of 700 m is taken as the research object to study the dynamic behaviors of deep rocks under high temperature. The impact compression tests at different impact air pressures (0.8, 1.0 and 1.2 MPa) are carried out on the skarn at room temperature and after high-temperature treatment (200 ℃, 400 ℃, 600 ℃ and 800 ℃) by using the split Hopkinson press bar experimental device. The fracture surface is observed by the SEM scanning electron microscope and XRD phase characteristic analysis technology to explore the micro-failure mechanism of the skarn under high temperature and dynamic load. The test results show that under the same impact air pressure, the strength of the skarn deteriorates and the ductility increases with the increase of temperature. And at the same temperature, both the strength and deformation of the skarn increase with the increase of impact pressure, showing obvious strain rate effect. With the increase of impact pressure or temperature, the crushing degree of the skarn becomes more and more intense, and the fragmentation becomes smaller and smaller, and especially smaller particles are mainly crushed at 800℃. The change of internal composition and structure is the main reason for the change of mechanical properties of the skarn. The brittle failure of the skarn is mainly transgranular and intergranular fracture at 25℃ ~ 400℃. 400℃ ~ 600℃ is the threshold temperature range of skarn transformation from brittle to plastic. When the temperature degree is up to 600℃ ~ 800℃, it transforms into dimple and slip fracture.
-
Keywords:
- skarn /
- high temperature /
- shpb /
- dynamic mechanical property /
- microscopic damage characteristic
-
-
表 1 动态冲击压缩试验结果
Table 1 Test results of skarn samples under dynamic impact compression
试件编号 温度/℃ 冲击气压/MPa 冲击速率/(m·s-1) 应变率/s-1 峰值应变ε 动态抗压强度/MPa 割线模量/GPa DY-0.8-1 25 0.8 7.73 24 0.0047 263.75 32.25 DY-0.8-4 200 0.8 7.73 81.68 0.0061 239.79 21.01 DY-0.8-7 400 0.8 7.73 72.85 0.0094 165.76 8.02 DY-0.8-10 600 0.8 7.73 97.13 0.0078 105.13 4.38 DY-0.8-13 800 0.8 7.73 117.21 0.0133 42.21 5.44 DY-1.0-16 25 1.0 8.44 44.58 0.0051 295.41 46.78 DY-1.0-19 200 1.0 8.44 83.89 0.0067 291.76 22.49 DY-1.0-22 400 1.0 8.44 105.92 0.0111 200.45 9.79 DY-1.0-25 600 1.0 8.44 147.91 0.0124 121.32 5.28 DY-1.0-28 800 1.0 8.44 152.32 0.0138 63.18 4.72 DY-1.2-31 25 1.2 9.28 52.98 0.0053 348.15 58.18 DY-1.2-34 200 1.2 9.28 101.55 0.0067 350.86 27.64 DY-1.2-37 400 1.2 9.28 143.49 0.0124 221.55 12.13 DY-1.2-40 600 1.2 9.28 158.94 0.0143 131.87 4.98 DY-1.2-43 800 1.2 9.28 165.57 0.0157 68.57 4.84 注:DY代表动载冲击压缩试验;0.8,1.0和1.2分别代表相应的气压。 -
[1] 何满潮, 谢和平, 彭苏萍, 等. 深部开采岩体力学研究[J]. 岩石力学与工程学报, 2005, 24(16): 2803–2813. doi: 10.3321/j.issn:1000-6915.2005.16.001 HE Man-chao, XIE He-ping, PENG Su-ping, et al. Study on rock mechanics in deep mining engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(16): 2803–2813. (in Chinese) doi: 10.3321/j.issn:1000-6915.2005.16.001
[2] 何满潮, 郭平业. 深部岩体热力学效应及温控对策[J]. 岩石力学与工程学报, 2013, 32(12): 2377–2393. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201312001.htm HE Man-chao, GUO Ping-ye. Deep rock mass thermodynamic effect and temperature control measures[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(12): 2377–2393. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201312001.htm
[3] 熊良宵, 虞利军. 高温作用下和高温后岩石力学特性的研究进展[J]. 地质灾害与环境保护, 2018, 29(1): 76–82. https://www.cnki.com.cn/Article/CJFDTOTAL-DZHB201801016.htm XIONG Liang-xiao, YU Li-jun. Advances of mechanical properties of rock under high temperature and after high temperature[J]. Journal of Geological Hazards and Environment Preservation, 2018, 29(1): 76–82. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZHB201801016.htm
[4] 邓申缘, 姜清辉, 商开卫, 等. 高温对花岗岩微结构及渗透性演化机制影响分析[J]. 岩土力学, 2021, 42(6): 1601–1611. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202106014.htm DENG Shen-yuan, JIANG Qing-hui, SHANG Kai-wei, et al. Effect of high temperature on micro-structure and permeability of granite[J]. Rock and Soil Mechanics, 2021, 42(6): 1601–1611. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202106014.htm
[5] 贾蓬, 杨其要, 刘冬桥, 等. 高温花岗岩水冷却后物理力学特性及微观破裂特征[J]. 岩土力学, 2021, 42(6): 1568–1578. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202106011.htm JIA Peng, YANG Qi-yao, LIU Dong-qiao, et al. Physical and mechanical properties and related microscopic characteristics of high-temperature granite after water-cooling[J]. Rock and Soil Mechanics, 2021, 42(6): 1568–1578. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202106011.htm
[6] 夏开文, 王帅, 徐颖, 等. 深部岩石动力学实验研究进展[J]. 岩石力学与工程学报, 2021, 40(3): 448–475. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202103002.htm XIA Kai-wen, WANG Shuai, XU Ying, et al. Advances in experimental studies for deep rock dynamics[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(3): 448–475. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202103002.htm
[7] KLEPACZKO J R. Behavior of rock-like materials at high strain rates in compression[J]. International Journal of Plasticity, 1990, 6(4): 415–432.
[8] 胡时胜, 王礼立, 宋力, 等. Hopkinson压杆技术在中国的发展回顾[J]. 爆炸与冲击, 2014, 34(6): 641–657. https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ201406001.htm HU Shi-sheng, WANG Li-li, SONG Li, et al. Review of the development of Hopkinson pressure bar technique in China[J]. Explosion and Shock Waves, 2014, 34(6): 641–657. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ201406001.htm
[9] 陈强, 王志亮. 分离式霍普金森压杆在岩石力学实验中的应用[J]. 实验室研究与探索, 2012, 31(11): 146–149. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSY201211046.htm CHEN Qiang, WANG Zhi-liang. Application of split Hopkinson pressure bar in rock mechanics experiments[J]. Research and Exploration in Laboratory, 2012, 31(11): 146–149. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYSY201211046.htm
[10] 尹土兵, 李夕兵, 王斌, 等. 高温后砂岩动态压缩条件下力学特性研究[J]. 岩土工程学报, 2011, 33(5): 777–784. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201105022.htm YIN Tu-bing, LI Xi-bing, WANG Bin, et al. Mechanical properties of sandstones after high temperature under dynamic loading[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(5): 777–784. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201105022.htm
[11] 刘石, 许金余. 高温作用对花岗岩动态压缩力学性能的影响研究[J]. 振动与冲击, 2014, 33(4): 195–198. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201404035.htm LIU Shi, XU Jin-yu. Effect of high temperature on dynamic compressive mechanical properties of granite[J]. Journal of Vibration and Shock, 2014, 33(4): 195–198. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201404035.htm
[12] 李明, 茅献彪, 曹丽丽, 等. 高温后砂岩动力特性应变率效应的实验研究[J]. 岩土力学, 2014, 35(12): 3479–3488. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201412019.htm LI Ming, MAO Xian-biao, CAO Li-li, et al. Experimental study of mechanical properties on strain rate effect of sandstones after high temperature[J]. Rock and Soil Mechanics, 2014, 35(12): 3479–3488. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201412019.htm
[13] WANG Z L, SHI H, WANG J G. Mechanical behavior and damage constitutive model of granite under coupling of temperature and dynamic loading[J]. Rock Mechanics and Rock Engineering, 2018, 51(10): 3045–3059.
[14] FAN L F, WU Z J, WAN Z, et al. Experimental investigation of thermal effects on dynamic behavior of granite[J]. Applied Thermal Engineering, 2017, 125: 94–103.
[15] 平琦, 吴明静, 张欢, 等. 高温条件下砂岩动态力学特性实验研究[J]. 地下空间与工程学报, 2019, 15(3): 691–698. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201903008.htm PING Qi, WU Ming-jing, ZHANG Huan, et al. Experimental study on dynamic mechanical characteristics of sandstone under actual high temperature conditions[J]. Chinese Journal of Underground Space and Engineering, 2019, 15(3): 691–698. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201903008.htm
[16] 平琦, 吴明静, 袁璞, 等. 冲击载荷作用下高温砂岩动态力学性能试验研究[J]. 岩石力学与工程学报, 2019, 38(4): 782–792. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201904012.htm PING Qi, WU Ming-jing, YUAN Pu, et al. Experimental study on dynamic mechanical properties of high temperature sandstone under impact loads[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(4): 782–792. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201904012.htm
[17] 方维萱, 郭玉乾, 贾润幸, 等. 论云南个旧锡铜钨三稀金属矿集区叠加成矿系统与垂向构造岩相学结构的关系[J]. 地质力学学报, 2021, 27(4): 557–584. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX202104005.htm FANG Wei-xuan, GUO Yu-qian, JIA Run-xing, et al. On relationship between the superimposed mineralization systems and the zoning patterns of vertical tectonic lithofacies in the Gejiu concentration area of Sn-Cu-W and three rare metals in Yunnan[J]. Journal of Geomechanics, 2021, 27(4): 557–584. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX202104005.htm
[18] ZHOU Y X, XIA K, LI X B, et al. Suggested methods for determining the dynamic strength parameters and mode-Ⅰ fracture toughness of rock materials[J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 49: 105–112.
[19] 宋力, 胡时胜. SHPB数据处理中的二波法与三波法[J]. 爆炸与冲击, 2005, 25(4): 368–373. https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ200504013.htm SONG Li, HU Shi-sheng. Two-wave and three-wave method in SHPB data processing[J]. Explosion and Shock Waves, 2005, 25(4): 368–373. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ200504013.htm
[20] YIN T B, WANG P, YANG J, et al. Mechanical behaviors and damage constitutive model of thermally treated sandstone under impact loading[J]. IEEE Access, 2018, 6: 72047–72062.
[21] 宋力, 胡时胜. SHPB测试中的均匀性问题及恒应变率[J]. 爆炸与冲击, 2005, 25(3): 207–216. https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ200503002.htm SONG Li, HU Shi-sheng. Stress uniformity and constant strain rate in SHPB test[J]. Explosion and Shock Waves, 2005, 25(3): 207–216. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ200503002.htm
[22] 杨圣奇, 田文岭, 董晋鹏. 高温后两种晶粒花岗岩破坏力学特性试验研究[J]. 岩土工程学报, 2021, 43(2): 281–289. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202102010.htm YANG Sheng-qi, TIAN Wen-ling, DONG Jin-peng. Experimental study on failure mechanical properties of granite with two grain sizes after thermal treatment[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(2): 281–289. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202102010.htm
[23] 陶明, 汪军, 李占文, 等. 冲击荷载下花岗岩层裂断口细–微观试验研究[J]. 岩石力学与工程学报, 2019, 38(11): 2172–2181. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201911003.htm TAO Ming, WANG Jun, LI Zhan-wen, et al. Meso-and micro-experimental research on the fracture of granite spallation under impact loads[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(11): 2172–2181. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201911003.htm
[24] 李晓锋, 李海波, 刘凯, 等. 冲击荷载作用下岩石动态力学特性及破裂特征研究[J]. 岩石力学与工程学报, 2017, 36(10): 2393–2405. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201710007.htm LI Xiao-feng, LI Hai-bo, LIU Kai, et al. Dynamic properties and fracture characteristics of rocks subject to impact loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(10): 2393–2405. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201710007.htm
-
期刊类型引用(23)
1. 余伟健,周明娟. 不同次裂隙数目条件下岩石力学特性及破坏模式. 采矿与安全工程学报. 2025(02): 394-403 . 百度学术
2. 范辉远,张苑玉,王腾腾,赵亚周,邓文良. 岩石力学参数的DSCM-FEM方法研究. 煤炭技术. 2025(04): 37-41 . 百度学术
3. 许珂,刘学生,谭云亮,李学斌,高宇栋,宋虎,唐颖钰. 不同单节理产状岩石力学性质数值模拟与强度预测模型. 中国矿业. 2024(04): 158-170 . 百度学术
4. 纪洪广,付桢,张月征,张春瑞,陈东升. 花岗岩破裂过程中“声发射-电阻率-波速”演化特征研究及工程探测应用. 中国矿业大学学报. 2024(05): 872-888 . 百度学术
5. 耿铭,孙静. 厚硬顶板悬顶致灾机理及切顶控制技术研究. 工矿自动化. 2024(11): 132-141 . 百度学术
6. 兰恒星,吕洪涛,包含,李黎,陈卫昌,郭进京,刘世杰. 石窟寺岩体劣化机制与失稳机理研究进展. 地球科学. 2023(04): 1603-1633 . 百度学术
7. 范财源,孟范宝,刘金锋. 单轴压缩作用下岩石脆性破裂机制的声发射识别. 中山大学学报(自然科学版)(中英文). 2023(03): 14-24 . 百度学术
8. 李昂,俞缙,刘士雨,涂兵雄,常方强. 水—力耦合作用下砂岩松弛特性试验与本构模型. 华侨大学学报(自然科学版). 2023(04): 469-476 . 百度学术
9. 郝宪杰,杨怀翔,张通,崔凡,陈博闻,罗江昊,张珀钒,张洪岚,李润泽,杨芳婷. 深部煤系储层损伤扩容点的天然裂隙与围压效应及声发射识别. 中国矿业大学学报. 2023(04): 648-659 . 百度学术
10. 高美奔,李天斌,陈国庆,孟陆波,马春驰,张岩,阴红宇,钟雨奕. 基于岩石峰前起裂及峰后特征的脆性评价方法. 岩土工程学报. 2022(04): 762-768 . 本站查看
11. 赵云阁,黄麟淇,李夕兵. 岩石损伤强度及峰值强度前后阶段的声发射识别. 岩土工程学报. 2022(10): 1908-1916 . 本站查看
12. 张航,夏元友,刘夕奇,祝文化,吝曼卿. 围岩应力梯度对应变型岩爆特征荷载影响模型试验研究. 公路交通科技. 2021(01): 104-111 . 百度学术
13. 宿辉,刘阔,王翀,白延杰,程方,隋智力. 三种不同粒径砂岩的强度与破坏特征. 科学技术与工程. 2021(26): 11349-11354 . 百度学术
14. 包含,裴润生,兰恒星,晏长根,许江波,翟勇,胥勋辉. 基于循环加卸载的矿物定向排列致各向异性岩石损伤演化规律——以黑云母石英片岩为例. 岩石力学与工程学报. 2021(10): 2015-2026 . 百度学术
15. 曾强,黄小荣,王晓军,陈青林,刘健,龚囱. 不同埋深灰岩岩爆倾向性及声发射特征试验研究. 黄金科学技术. 2021(06): 863-873 . 百度学术
16. 董晋鹏,杨圣奇,李斌,黄彦华. 共面双裂隙类岩石材料抗拉强度试验研究. 工程力学. 2020(03): 188-201 . 百度学术
17. 王云飞,宿辉,王立平,焦华喆,李震. 3种砂岩变形与强度特征对比分析. 煤炭学报. 2020(04): 1367-1374 . 百度学术
18. 张晓平,吕根根,张旗,刘泉声,李伟伟,许金林. 单轴压缩条件下硅质粉砂岩应力阈值研究. 工程地质学报. 2020(03): 441-449 . 百度学术
19. 王云飞,焦华喆,李震,宿辉. 白砂岩卸围压强度与损伤破坏特征. 煤炭学报. 2020(08): 2787-2794 . 百度学术
20. 岳中文,任猛,范军平,李世和,郑昌达,康一强. 岩石特征强度变化规律的试验研究. 矿业研究与开发. 2019(08): 43-46 . 百度学术
21. 王春来,侯晓琳,李海涛,张书江,陶志刚. 单轴压缩砂岩细观裂纹动态演化特征试验研究. 岩土工程学报. 2019(11): 2120-2125 . 本站查看
22. 郭孔灵,杨磊,盛祥超,梅洁,李邦翔,张波,杨为民,宋光啸. 水力耦合作用下含三维裂隙类岩石材料的破裂力学行为及声发射特征. 岩土力学. 2019(11): 4380-4390 . 百度学术
23. 刘海霞,侯斌,王刚,马明. 基于声发射参数及分形理论的岩石损伤模型. 中国科技论文. 2018(22): 2605-2609 . 百度学术
其他类型引用(25)