Modal identification of high earth-rock dams based on seismic records and SSI method
-
摘要: 采用实测地震记录来识别高土石坝的模态参数是进行大坝动力特性研究的一种可行的方式。根据地震中坝体监测点记录的数据构建协方差驱动的随机子空间模型(stochastic subspace identification, SSI),通过构造多个不同维度的Hankel矩阵来形成稳定图,可以很好地剔除虚假模态,形成较清晰的稳定轴,采用谱系聚类的筛选方法,不仅可以有效地识别坝体的固有频率和阻尼比,而且实现了物理模态参数的自动识别,规避了人为选择引入的误差。通过两个数值算例验证了提出的随机子空间法应用于地震数据分析的有效性和精度,并将其应用于糯扎渡心墙堆石坝的模态参数识别,获得了合理的坝体固有频率和阻尼比,表明该方法可以较好地识别出坝体的模态参数,具有很好的工程应用,可以为高土石坝抗震安全有限元分析提供一定的依据和参考。Abstract: Using the measured seismic records to identify the modal parameters of high earth-rock dams is a feasible way to study the dynamic characteristics of dams. Constructing the covariance-driven stochastic subspace identification (SSI) based on the data recorded at the monitoring points of a dam during the earthquake and the stable graph by establishing multiple Hankel matrices with different dimensions can effectively eliminate false modes. The hierarchical clustering can effectively identify the natural frequency and damping ratio of the dam, and realize the automatic identification of physical modal parameters, avoiding the errors introduced by human selection. The effectiveness and accuracy of the proposed SSI method for seismic data analysis are verified by numerical examples. It is applied to the identification of modal parameters of Nuozhadu core-wall rockfill dam, and the reasonable frequency and damping ratio are obtained, indicating that the method can identify the modal parameters of the dam well and has a good engineering application, and it can provide a certain basis and reference for the finite element analysis of seismic safety of high earth-rock dams.
-
-
表 1 双自由度模态参数识别结果
Table 1 Identified model parameters of two degrees of freedom system model
振型 频率/Hz 阻尼比 理论值 计算值 理论值 计算值 1阶 4.653 4.614 0.107 0.105 2阶 12.458 12.856 0.234 0.246 表 2 均质堆石坝模态参数识别结果
Table 2 Identified model parameters of homogeneous rockfill dam
振型 频率/Hz 阻尼比 计算值 FEM 计算值 FEM 1阶 1.11 1.09 0.023 0.020 2阶 1.75 1.76 0.016 0.020 3阶 1.93 1.96 0.022 0.020 4阶 2.20 2.24 0.015 0.020 表 3 糯扎渡大坝模态参数识别结果
Table 3 Identified model parameters of Nuozhadu dam
振型 频率/Hz 阻尼比 计算值 FEM1 FEM2 计算值 FEM 1阶 1.15 1.10 1.22 0.051 0.04 2阶 1.35 1.27 1.42 0.034 0.04 3阶 1.83 1.54 1.73 0.027 0.04 4阶 2.37 1.74 1.96 0.043 0.04 注: FEM1为相互作用有限元模型,FEM2为刚性边界模型。 -
[1] 李红军, 朱凯斌, 赵剑明, 等. 基于设定地震场地相关反应谱的高土石坝抗震安全评价[J]. 岩土工程学报, 2019, 41(5): 934-941. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201905021.htm LI Hong-jun, ZHU Kai-bin, ZHAO Jian-ming, et al. Safety evaluation of high rock-fill dams subjected to earthquakes based on the site-related response spectra[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(5): 934-941. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201905021.htm
[2] 朱亚林, 孔宪京, 邹德高, 等. 河谷地形对高土石坝动力反应特性影响的分析[J]. 岩土工程学报, 2012, 34(9): 1590-1597. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201209008.htm ZHU Ya-lin, KONG Xian-jing, ZOU De-gao, et al. Effect of valley topography on dynamic response properties of high earth-rockfill dams[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(9): 1590-1597. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201209008.htm
[3] CHENG L, ZHENG D J. The identification of a dam's modal parameters under random support excitation based on the Hankel matrix joint approximate diagonalization technique[J]. Mechanical Systems and Signal Processing, 2014, 42(1/2): 42-57.
[4] 王茂华, 迟世春, 刘振平. 考虑相互作用影响的堆石料动力参数反演[J]. 岩土工程学报, 2019, 41(10): 1967-1976. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201910029.htm WANG Mao-hua, CHI Shi-chun, LIU Zhen-ping. Back analysis of dynamic parameters of rock-fill materials considering interaction effects[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(10): 1967-1976. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201910029.htm
[5] ALVES S W, HALL J F. System identification of a concrete arch dam and calibration of its finite element model[J]. Earthquake Engineering and Structural Dynamics, 2006, 35(11): 1321-1337. doi: 10.1002/eqe.575
[6] LOH C H, WU T C. System identification of Fei-Tsui arch dam from forced vibration and seismic response data[J]. Journal of Earthquake Engineering, 2000, 4(4): 511-537.
[7] LOH C H, WU T S. Identification of Fei-Tsui arch dam from both ambient and seismic response data[J]. Soil Dynamics and Earthquake Engineering, 1996, 15(7): 465-483. doi: 10.1016/0267-7261(96)00016-4
[8] YANG J, JIN F, WANG J T, et al. System identification and modal analysis of an arch dam based on earthquake response records[J]. Soil Dynamics and Earthquake Engineering, 2017, 92: 109-121. doi: 10.1016/j.soildyn.2016.09.039
[9] 李帅, 潘坚文, 罗广衡, 等. 溪洛渡拱坝模态参数识别[J]. 水力发电学报, 2020, 39(3): 86-95. https://www.cnki.com.cn/Article/CJFDTOTAL-SFXB202003009.htm LI Shuai, PAN Jian-wen, LUO Guang-heng, et al. Modal parameter identification for Xiluodu arch dam[J]. Journal of Hydroelectric Engineering, 2020, 39(3): 86-95. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SFXB202003009.htm
[10] 谯雯, 罗佩, 刘国明. 基于自然激励技术和HHT变换的重力坝模态分析[J]. 水利学报, 2014, 45(8): 958-966. doi: 10.13243/j.cnki.slxb.2014.08.009 QIAO Wen, LUO Pei, LIU Guo-ming. Modal parameter identification of gravity dam based on natural excitation technique and Hilbert-Huang transform[J]. Journal of Hydraulic Engineering, 2014, 45(8): 958-966. (in Chinese) doi: 10.13243/j.cnki.slxb.2014.08.009
[11] 何蕴龙, 刘俊林, 熊堃. 汶川地震冶勒大坝动力响应规律分析[J]. 四川大学学报(工程科学版), 2009, 41(3): 157-164. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH200903026.htm HE Yun-long, LIU Jun-lin, XIONG Kun. Seismic response of Yele dam during Wenchuan earthquake[J]. Journal of Sichuan University (Engineering Science Edition), 2009, 41(3): 157-164. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH200903026.htm
[12] 孔宪京, 周扬, 邹德高, 等. 汶川地震余震记录及紫坪铺面板堆石坝余震反应研究[J]. 岩土工程学报, 2011, 33(5): 673-678. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201105003.htm KONG Xian-jing, ZHOU Yang, ZOU De-gao, et al. Aftershock records of Wenchuan Earthquake and seismic response of Zipingpu Concrete Face Rock-fill Dam[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(5): 673-678. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201105003.htm
[13] 苗君, 何蕴龙, 曹学兴, 等. 芦山地震冶勒大坝强震监测资料分析[J]. 岩土力学, 2015, 36(1): 225-232, 256. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201501031.htm MIAO Jun, HE Yun-long, CAO Xue-xing, et al. Analysis of strong motion seismograph data at rockfill Yele dam during Lushan earthquake[J]. Rock and Soil Mechanics, 2015, 36(1): 225-232, 256. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201501031.htm
[14] 刘振平, 迟世春, 赵显波, 等. 鲤鱼潭大坝坝料动力参数反演[J]. 岩土工程学报, 2015, 37(4): 761-768. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201504029.htm LIU Zhen-ping, CHI Shi-chun, ZHAO Xian-bo, et al. Back analysis of dynamic parameters of Liyutan dam materials[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(4): 761-768. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201504029.htm
[15] 王茂华, 迟世春, 相彪, 等. 弱震情况下高土石坝坝料动力参数反演分析[J]. 岩土工程学报, 2020, 42(2): 289-298. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202002014.htm WANG Mao-hua, CHI Shi-chun, XIANG Biao, et al. Back analysis of dynamic parameters of high earth-rock dam materials under weak earthquakes[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 289-298. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202002014.htm
[16] 李平, 薄景山, 李孝波, 等. 安宁河河谷及邛海地区土层场地对地震动的放大作用[J]. 岩土工程学报, 2016, 38(2): 362-369. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201602026.htm LI Ping, BO Jing-shan, LI Xiao-bo, et al. Amplification effect of soil sites on ground motion in Anning River valley and Qionghai Lake area[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(2): 362-369. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201602026.htm
[17] 章国稳. 环境激励下结构模态参数自动识别与算法优化[D]. 重庆: 重庆大学, 2012. ZHANG Guo-wen. Modal Parameter Automatic Identification for Structures Under Ambient Excitation and Algorithm Optimization[D]. Chongqing: Chongqing University, 2012. (in Chinese)
[18] REYNDERS E, ROECK G D. Reference-based combined deterministic-stochastic subspace identification for experimental and operational modal analysis[J]. Mechanical Systems and Signal Processing, 2008, 22(3): 617-637.
[19] ZHANG L M, WANG T, TAMURA Y. A frequency- spatial domain decomposition (FSDD) method for operational modal analysis[J]. Mechanical Systems and Signal Processing, 2010, 24(5): 1227-1239.
[20] 张永祥, 刘心, 褚志刚, 等. 基于随机子空间法的模态参数自动提取[J]. 机械工程学报, 2018, 54(9): 187-194. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201809023.htm ZHANG Yong-xiang, LIU Xin, CHU Zhi-gang, et al. Autonomous modal parameter extraction based on stochastic subspace identification[J]. Journal of Mechanical Engineering, 2018, 54(9): 187-194. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201809023.htm
[21] 汤宝平, 章国稳, 陈卓. 基于谱系聚类的随机子空间模态参数自动识别[J]. 振动与冲击, 2012, 31(10): 92-96. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201210021.htm TANG Bao-ping, ZHANG Guo-wen, CHEN Zhuo. Automatic stochastic subspace identification of modal parameters based on hierarchical clustering method[J]. Journal of Vibration and Shock, 2012, 31(10): 92-96. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201210021.htm
[22] MAGALHÃES F, CUNHA Á, CAETANO E. Online automatic identification of the modal parameters of a long span arch bridge[J]. Mechanical Systems and Signal Processing, 2009, 23(2): 316-329.
[23] PEETERS B, DE ROECK G. Reference-based stochastic subspace identification for output-only modal analysis[J]. Mechanical Systems and Signal Processing, 1999, 13(6): 855-878.
[24] BAKIR P G. Automation of the stabilization diagrams for subspace based system identification[J]. Expert Systems with Applications, 2011, 38(12): 14390-14397.
[25] HONG A L, UBERTINI F, BETTI R. New stochastic subspace approach for system identification and its application to long-span bridges[J]. Journal of Engineering Mechanics, 2013, 139(6): 724-736.
[26] 大崎顺彦. 振动理论[M]. 谢礼立,译. 北京: 地震出版社, 1990. AKIHIKO O. Vibration Theory[M]. XIE Li-yi, trans. Beijing: Seismological Press, 1990. (in Chinese)
[27] 徐斌, 邹德高, 孔宪京, 等. 高土石坝坝坡地震稳定分析研究[J]. 岩土工程学报, 2012, 34(1): 139-144. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201201015.htm XU Bin, ZOU De-gao, KONG Xian-jing, et al. Seismic stability of slopes of high rockfiU dams[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(1): 139-144. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201201015.htm
[28] 孔宪京, 娄树莲, 邹德高, 等. 筑坝堆石料的等效动剪切模量与等效阻尼比[J]. 水利学报, 2001, 32(8): 20-25. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200108003.htm KONG Xian-jing, LOU Shu-lian, ZOU De-gao, et al. The equivalent dynamic shear modulus and equivalent damping ratio of the rockfill for dam[J]. Journal of Hydraulic Engineering, 2001, 32(8): 20-25. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200108003.htm
[29] 中国水电顾问集团昆明勘测设计研究院. 200 m级以上高心墙堆石坝坝料特性及坝料设计准则研究[R]. 昆明: 中国水电顾问集团昆明勘测设计研究院, 2010. Hydro China Kunming Engineering Corporation. Study on Dam Material Characteristics and Design Criteria of Dam Materials for High Core Wall Rockfill Dam Above 200 m[R]. Kunming: Hydro China Kunming Engineering Corporation, 2010. (in Chinese)
[30] 楚金旺, 朱晟, 黄亚梅. 基于实际震害的土石坝永久变形估算[J]. 中国水利水电科学研究院学报, 2017, 15(6): 409-417. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSX201706001.htm CHU Jin-wang, ZHU Sheng, HUANG Ya-mei. Estimation of earthquake-induced permanent deformation for earth dam based on seismic damage[J]. Journal of China Institute of Water Resources and Hydropower Research, 2017, 15(6): 409-417. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSX201706001.htm
[31] 毛雯娟. 强震区高土石坝三维动力反应分析[D]. 大连: 大连理工大学, 2008. MAO Wen-juan. 3-D Dynamic Analysis of High Rockfill Dam in Meizoseismal Area[D]. Dalian: Dalian University of Technology, 2008. (in Chinese)
[32] 杨玉生, 刘小生, 刘启旺, 等. 双江口心墙堆石坝动力特性的振动台模型试验研究[J]. 水力发电学报, 2011, 30(1): 114-119. https://www.cnki.com.cn/Article/CJFDTOTAL-SFXB201101020.htm YANG Yu-sheng, LIU Xiao-sheng, LIU Qi-wang, et al. Shaking table model tests on dynamic characteristics of Shuangjiangkou high earth-rockfill dam[J]. Journal of Hydroelectric Engineering, 2011, 30(1): 114-119. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SFXB201101020.htm
-
期刊类型引用(8)
1. 刘华仁,佟大威,余佳,苏哲. 基于模糊聚类和随机子空间的高土石坝模态参数自动识别. 水力发电学报. 2025(02): 107-115 . 百度学术
2. 蔡正银,范开放,朱洵. 基于现场试验的海上筒型基础风电结构动力特性研究. 岩土工程学报. 2025(03): 443-452 . 本站查看
3. 张翰,张锋,谭尧升,姚孟迪,邓检华. 基于运行时模态分析和代理模型的大坝力学参数反演方法. 粉煤灰综合利用. 2025(01): 163-166 . 百度学术
4. 张晓明,谭蓉,贺育明,强继峰,孙森林,张朝军,梁刚. 基于时频域信号特征的输电塔运行模态分析. 电网与清洁能源. 2025(03): 46-52+59 . 百度学术
5. 王晓澎,张浩,李欣,肖森,刘璇. 基于随机子空间法的滑动轴承运行模态参数识别. 噪声与振动控制. 2024(01): 126-133 . 百度学术
6. 樊圆,卢文胜,虞终军,任祥香. 多次地震作用下高层建筑结构动力特性识别和响应分析. 建筑结构学报. 2023(01): 225-234 . 百度学术
7. 翟世龙,刘萍,黄静,艾萨·伊斯马伊力,毛玉剑. 基于大坝地震反应台阵的土石坝模态参数识别. 内陆地震. 2023(04): 353-361 . 百度学术
8. 黄嘉思,徐文城,段元锋,章红梅. 基于随机子空间方法的向量式有限元索网模型模态识别. 结构工程师. 2022(06): 1-6 . 百度学术
其他类型引用(7)