Loading [MathJax]/jax/output/SVG/fonts/TeX/Size3/Regular/Main.js
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

可溶性有机质对土壤胶体可移动性影响试验研究

张文杰, 蒋峰永

张文杰, 蒋峰永. 可溶性有机质对土壤胶体可移动性影响试验研究[J]. 岩土工程学报, 2021, 43(11): 2013-2019. DOI: 10.11779/CJGE202111007
引用本文: 张文杰, 蒋峰永. 可溶性有机质对土壤胶体可移动性影响试验研究[J]. 岩土工程学报, 2021, 43(11): 2013-2019. DOI: 10.11779/CJGE202111007
ZHANG Wen-jie, JIANG Feng-yong. Experimental study on effect of dissolved organic matter on mobility of soil colloids[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 2013-2019. DOI: 10.11779/CJGE202111007
Citation: ZHANG Wen-jie, JIANG Feng-yong. Experimental study on effect of dissolved organic matter on mobility of soil colloids[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 2013-2019. DOI: 10.11779/CJGE202111007

可溶性有机质对土壤胶体可移动性影响试验研究  English Version

基金项目: 

国家自然科学基金项目 41772300

详细信息
    作者简介:

    张文杰(1978— ),男,博士,教授,主要从事环境岩土工程方面的研究工作。E-mail:zhwjlyl@163.com

  • 中图分类号: TU411

Experimental study on effect of dissolved organic matter on mobility of soil colloids

  • 摘要: 土壤胶体广泛存在于地下环境中,胶体可能加快也可能阻滞土中污染物迁移,关键在于胶体的可移动性。以腐殖酸和牛血清白蛋白为典型可溶性有机质,以膨润土胶体作为典型无机土壤胶体,进行一系列胶体迁移试验,研究了不同离子强度条件下不同可溶性有机质对土壤胶体可移动性的影响,根据DLVO理论探讨土壤胶体迁移机理。试验结果表明,膨润土胶体的可移动性随着离子强度的增大而减弱;腐殖酸和牛血清白蛋白均有利于膨润土胶体的移动,其中腐殖酸比牛血清白蛋白更能加快胶体移动;离子强度相同时,大孔隙度介质中膨润土胶体的可移动性高于小孔隙度介质。
    Abstract: Soil colloids are widely distributed in underground environment. They can facilitate or retard the migration of pollutants in soils, depending on the mobility of the colloids. By choosing the humic acid and bovine serum albumin as the typical dissolved organic matters and the bentonite colloid as the typical soil inorganic colloid, a series of colloid migration tests are carried out to investigate the effect of different dissolved organic matters on the mobility of the soil colloids under different ionic strengths. The mobility mechanism of the colloids is explored according to the DLVO theory. The results show that the mobility of the bentonite colloids decreases with the increasing ionic strength. Both the humic acid and the bovine serum albumin can facilitate the mobility of the bentonite colloid, among which the enhancement by the humic acid is more obvious than that of the bovine serum albumin. Under the same ionic strength, the mobility of the bentonite colloid in column with larger pore volume is higher than that with smaller pore volume.
  • 足尺试验是了解盾构隧道结构力学行为的有效方法。许多学者开展了足尺管片接头试验来研究纵缝接头的变形特征和力学特性[1-3]。隧道管片纵缝接头在持续加载作用下的力学性能是以往研究的重点,而很少研究在应用修复措施治理隧道大变形时纵向接缝的变形和力学特性、可恢复性以及恢复效率[4]

    本文通过开展盾构隧道拱顶双缝接头和拱腰单缝接头的原型足尺试验,旨在探究两类接头在隧道上方堆载作用下的变形发展规律,分析盾构隧道管片在恢复过程中各性态特征的演化规律,评价不同既有变形条件下隧道管片不同部位接头变形的恢复效果。

    本文针对上海地铁隧道运用的管片衬砌环中的纵缝接头进行一系列室内结构原型试验,隧道衬砌环和纵缝接头构造形式如图 1所示。试验试件包括两类接头,分别为位于隧道管片环拱顶位置受正弯矩作用的纵缝接头(即封顶块和邻接块连接处接头,以下称为拱顶接头)和位于隧道管片环拱腰位置受负弯矩作用的纵缝接头(即邻接块和标准块连接处接头,以下称为拱腰接头),如图 2所示。弯矩以衬砌环内侧受拉为正,轴力以受压为正。

    图  1  上海地铁盾构隧道管片衬砌结构
    Figure  1.  Structure of segment linings of shield tunnel in Shanghai Metro
    图  2  试验现场照片:(a)拱顶接头试件;(b)拱腰接头试件;(c)位移传感器布置;(d)隧道衬砌环横截面图
    Figure  2.  Photos of test set-up: (a) Specimen of longitudinal joint at tunnel crown, (b) Specimen of longitudinal joint at tunnel waist, (c) Arrangement of displacement sensors, (d) Cross-sectional view of tunnel lining ring

    值得注意的是,隧道拱腰和拱脚纵缝是径向平直面,而拱顶纵缝是与径向斜交的平直面,拱顶纵缝接头是楔形结构,见图 1(a)。然而,以往研究中采用的是简化的如拱腰一样的直缝结构,不能准确描述拱顶处实际的斜接缝构造的力学行为。本文采用隧道拱顶双接头形式进行试验研究。

    采用考虑接头非线性刚度的盾构隧道衬砌分析模型[5]计算接头内力(弯矩、轴力和剪力)。如图 3所示,隧道埋深15 m,周围土体为典型的上海软土,饱和重度(γ)为18 kN/m3,静止侧压力系数(K0)为0.65,地层抗力系数(KS)为6000 kN/m3。该模型首先通过对隧道结构施加竖向压力来模拟地面超载对隧道变形的影响。然后,通过移除竖向压力来模拟卸载。最后,通过对隧道结构施加侧向压力模拟注浆对隧道变形的恢复作用。根据接头内力计算结果可以确定足尺试验中对应不同工况的加载路径。

    图  3  接头内力计算模型
    Figure  3.  Computational model for internal force of joints

    试验中,通过水平和垂直液压千斤顶向试件施加水平载荷和垂直载荷,以模拟接头内力(即弯矩、轴力和剪力),见图 2中(a)和(b)。图 4图 5分别为试验中拱顶接头和拱腰接头的受力分析图。根据力矩平衡方程,拱顶接头试件和拱腰接头试件的外部载荷和内力之间的关系可由式(1)和式(2)分别推导得到。

    {M=GL2+P(L2L1)NhN=Ncosθ+12GsinθQ=Nsinθ+12Gcosθ
    (1)
    {M=PL2G(L1L2L3)NhN=N
    (2)
    图  4  拱顶接头试件受力分析
    Figure  4.  Stress analysis of longitudinal joints at tunnel crown
    图  5  拱腰接头试件受力分析
    Figure  5.  Stress analysis of longitudinal joints at tunnel waist

    式中G为管片重力;MNQ分别为接头处弯矩、轴力和剪力;NP分别为由水平液压千斤顶和竖向液压千斤顶施加的水平向荷载和垂向载荷,通过POP-M工控PC电液伺服多通道控制器实现试验进程的自动控制。

    针对拱顶接头和拱腰接头共开展了6组试验,工况Ⅰ~Ⅲ和工况IV~VI分别研究拱顶接头和拱腰接头超载变形后通过卸载和注浆的变形恢复过程,具体试验过程见表 1。试验在同济大学岩土及地下工程教育部重点实验室进行,采用TJ-GPJ2000盾构管片接头试验加载系统。试验过程中接缝张开量由线性位移传感器(LVDT)测得,如图 2中(c)所示。

    表  1  试验工况
    Table  1.  Test design
    工况编号 接头类型 试验内容 加载过程 试验控制变量 变量值 正常荷载
    水平
    工况Ⅰ 拱顶接头 变形恢复过程 加载至正常荷载水平→施加超载→卸载至正常荷载水平→注浆过程模拟 超载程度/接头内力;
    弯矩M
    轴力S
    剪力Q
    M=178 kN/m,
    N=593 kN,
    Q=88 kN
    拱顶接头:
    M=118 kN/m,
    N=590 kN,
    Q=87 kN
    拱腰接头:
    M=98 kN/m,
    N=816 kN
    工况Ⅱ M=278 kN/m,
    N=927 kN,
    Q=134 kN
    工况Ⅲ M=378 kN/m,
    N=1260 kN,
    Q=181 kN
    工况Ⅳ 拱腰接对 M=155 kN/m,
    N=968 kN
    工况Ⅴ M=171 kN/m,
    N=1068 kN,
    工况Ⅵ M=188 kN/m,
    N=1175 kN
    下载: 导出CSV 
    | 显示表格

    图 6对比显示了受正弯矩作用的隧道拱顶接头在工况Ⅰ~Ⅲ中接缝张开增量的变化。在超载过程中,接头张开量随着荷载的增加而增大。当3工况试件达到最大荷载时,接头变形也达到峰值。在卸载过程中,试验结果表明卸载能在一定程度上恢复接头变形,但不能完全恢复。接头变形卸载恢复百分比,即卸载减少的接缝张开增量与卸载前接缝张开增量的比值,分别为68%,56%,43%。这表明超载越小即变形程度越小,接头变形的可恢复性越好。

    图  6  工况Ⅰ~Ⅲ中拱顶接头在超载、卸载和土体注浆过程中的荷载–变形关系曲线
    Figure  6.  Load-deformation curves of longitudinal joints at tunnel crown during overloading, unloading and soil grouting conditions for test cases Ⅰ~Ⅲ

    针对土体注浆对拱顶接头变形恢复的试验模拟,试验结果表明,其荷载–变形曲线的斜率比卸载过程小得多。减小相同的弯矩,土体注浆可使接头变形得到更有效的恢复,这是因为土体注浆引起的拱顶弯矩减小和轴力增大导致偏心距减小。为了在卸载后将接头变形完全恢复到正常载荷状态下的水平,工况Ⅰ~Ⅲ需要通过模拟土体注浆分别减小弯矩值为20,25,40 kN·m,如图 6所示。

    图 7对比显示了受负弯矩作用的隧道拱腰接头在工况Ⅳ~Ⅵ中接缝张开增量的变化。在超载阶段,相同载荷水平下,3工况的接缝张开增量几乎相同。荷载–变形曲线斜率的减小表明拱腰接头试件的抗弯刚度随着超载水平的增加而降低。在此基础上,研究了卸载和注浆作用下的变形恢复效果。接头变形卸载恢复百分比分别为65%,42%,36%。显然,与拱顶接头呈现的特性一样,变形程度越小卸载恢复效果百分比越大。

    图  7  工况Ⅳ~Ⅵ中拱腰接头在超载、卸载和土体注浆过程中的荷载–变形关系曲线
    Figure  7.  Load-deformation curves of longitudinal joints at tunnel waist during overloading, unloading and soil grouting conditions for test cases Ⅳ~Ⅵ

    在试验模拟土体注浆阶段,荷载–变形曲线的斜率明显小于卸载阶段。在隧道两侧注浆产生的侧向挤压力的作用下,接头偏心距减小。因此,通过减少相同的弯矩,土体注浆比卸载获得更有效的恢复。此外,为了将变形恢复到正常荷载状态的水平,即将接缝张开增量减小到零,试验结果显示工况Ⅳ~Ⅵ分别需要减少弯矩为16,42,48 kN·m。

    从两类接头的试验结果可知:超载作用下接头张开变形呈现出非线性发展规律,总体上,两类接头的抗弯刚度随着接头已有张开变形的增大而降低;超载引起的变形可以通过卸载得到部分恢复,既有变形越小,恢复效果越好,但不能完全恢复到超载之前状态;注浆作用下,拱顶接头的变形恢复效果较拱腰接头更为显著,这是由于注浆产生的横向挤压作用在减小拱顶接头弯矩的同时亦增大了其轴力,即有效降低了拱顶接头处的偏心距。

    本文介绍了上海地铁隧道管片衬砌纵缝接头的一系列室内足尺试验结果,初步探究了卸载和土体注浆对超载引起接头变形的可恢复性,得出以下结论:

    (1) 在地面超载作用下,衬砌环发生较大的横向变形,拱顶接头向隧道管片内侧张开,拱腰接头向隧道管片外侧张开,导致渗漏水等隧道病害发生的概率增大。

    (2) 超载引起的变形能够通过卸载恢复部分变形,既有变形越小,恢复效率越高。当减少相同的弯矩时,土体注浆比卸载能实现更有效的恢复。

    (3) 由于隧道衬砌环中的所有纵缝接头钢螺栓均靠近管片内侧,拱腰接头抗弯能力较拱顶接头差,转动刚度较小,变形较大,变形恢复效果较差。此外,注浆作用下,拱顶接头的变形恢复效果较拱腰接头更为显著,其原因是注浆有效降低了拱顶接头处的偏心距。因此,建议加强拱腰接头处结构设计,增强其抗弯强度,从而提升隧道衬砌的整体安全性能。

  • 图  1   土壤胶体迁移试验装置示意图

    Figure  1.   Set-up of migration tests on soil colloids

    图  2   不同可溶性有机质种类的胶体DLVO势能曲线

    Figure  2.   DLVO potential energy curves of colloids corresponding to different kinds of dissolved organic matters

    图  3   不同离子强度下的穿透曲线

    Figure  3.   Breakthrough curves under different ionic strengths

    图  4   粗粒玻璃珠柱中,不同离子强度下的穿透曲线

    Figure  4.   Breakthrough curves under different ionic strengths in thick glass beads

    图  5   不同可溶性有机质种类的穿透曲线

    Figure  5.   Breakthrough curves corresponding to different kinds of dissolved organic matters

    图  6   可溶性有机质种类对胶体Zeta电位和粒径的影响

    Figure  6.   Effects of dissolved organic matter species on colloidal Zeta potential and particle size

    表  1   膨润土的主要物理参数

    Table  1   Main physical parameters of bentonite

    蒙脱石含量/%天然含水率/%液限/%塑限/%相对质量密度
    75.49.6163322.76
    下载: 导出CSV

    表  2   土壤胶体迁移试验方案及相关参数

    Table  2   Parameters of migration tests on soil colloids

    离子强度/(mmol·L-1)可溶性有机质玻璃珠柱类型Zeta电位/mV胶粒Zeta电位/mV玻璃珠胶粒直径/nm孔隙度出流量/%滞留量/%回收率/%
    1细粒-33.2±0.68-31.69±1.13669.7±40.70.2267.332.699.9
    1HA细粒-45.84±0.17-50.37±0.51494.8±320.2199.20.299.4
    1BSA细粒-40.4±0.32-41.65±0.92574.4±31.50.2179.919.799.6
    1粗粒0.3494.55.199.6
    5细粒-31.13±0.18-30.18±0.33705.4±42.10.2154.844.799.5
    5HA细粒-40.69±0.21-48.32±0.29594.7±38.50. 2080.818.999.7
    5BSA细粒-39.37±0.99-45.33±0.43593.3±34.20.2364.335.199.4
    5粗粒0.3373.826.099.8
    10细粒-30.43±0.41-28.78±0.34737.5±520.2439.360.199.4
    10HA细粒-39.93±0.03-46.99±0.72594.7±29.30.2267.432.399.7
    10BSA细粒-35.57±1.03-39.19±0.77649.2±37.20.2243.255.899.0
    10粗粒0.3547.051.398.3
    50细粒-20.64±0.54-22.07±0.39868.9±630.2126.273.599.7
    50HA细粒-34.87±0.76-40.01±0.62728.5±60.80.2151.746.297.9
    50BSA细粒-28.49±0.11-37.42±0.52786±64.50.2229.969.499.3
    50粗粒0.3234.964.499.3
    100细粒-16.31±0.66-18.19±0.781106.67±66.30.2218.880.699.4
    100HA细粒-31.77±0.63-31.87±0.43806.66±520.2037.261.999.1
    100BSA细粒-26.65±0.89-28.98±0.25950.2±550.2123.276.799.9
    100粗粒0.3527.572.099.5
    注:“—”表示未检验。
    下载: 导出CSV
  • [1] 张文杰, 李俊涛. 优先流作用下的胶体-重金属共迁移试验研究[J]. 岩土工程学报, 2020, 42(1): 46-52. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202001010.htm

    ZHANG Wen-jie, LI Jun-tao. Investigation of co-migration of heavy metal with colloid under preferential flow[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 46-52. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202001010.htm

    [2]

    ZHANG W, MORALES V L, CAKMAK M E, et al. Colloid transport and retention in unsaturated porous media: effect of colloid input concentration[J]. Environmental Science & Technology, 2010, 44(13): 4965-4972.

    [3]

    ARAMRAK S, FLURY M, HARSH J B, et al. Colloid mobilization and transport during capillary fringe fluctuations[J]. Environmental Science & Technology, 2014, 48(13): 7272-7279.

    [4] 蔡叶青, 陈永贵, 叶为民, 等. 处置库近场膨润土胶体产生及稳定性研究进展[J]. 岩土工程学报, 2020, 42(11): 1996-2005. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202011006.htm

    CAI Ye-qing, CHEN Yong-gui, YE Wei-min, et al. Advances in formation of bentonite colloid and its stability in near-field of high-level radioactive waste repository[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 1996-2005. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202011006.htm

    [5]

    MURALI R, MURTHY C N, CHAMYAL L S. Characterization of colloids in the late Quaternary sediment sequences of Mahi River basin, Gujarat, India[J]. Current Science, 2012, 103(10): 1209-1215.

    [6]

    KANTI SEN T, KHILAR K C. Review on subsurface colloids and colloid-associated contaminant transport in saturated porous media[J]. Advances in Colloid and Interface Science, 2006, 119(2/3): 71-96.

    [7]

    ZHANG H J, LU T T, ZHANG R Y, et al. Effects of clay colloids on ciprofloxacin transport in saturated quartz sand porous media under different solution chemistry conditions[J]. Ecotoxicology and Environmental Safety, 2020, 199: 110754. doi: 10.1016/j.ecoenv.2020.110754

    [8] 张凡, 张永祥, 王祎啸. 基于DLVO理论探究不同因素下土壤胶体迁移堵塞问题[J]. 山东化工, 2019, 48(13): 227-231, 233. https://www.cnki.com.cn/Article/CJFDTOTAL-SDHG201913094.htm

    ZHANG Fan, ZHANG Yong-xiang, WANG Yi-xiao. Study on migration and blockage of soil colloids under different factors based on DLVO theory[J]. Shandong Chemical Industry, 2019, 48(13): 227-231, 233. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SDHG201913094.htm

    [9]

    BRADFORD S A, KIM H N, HAZNEDAROGLU B Z, et al. Coupled factors influencing concentration-dependent colloid transport and retention in saturated porous media[J]. Environmental Science & Technology, 2009, 43(18): 6996-7002.

    [10]

    ROD K, UM W, CHUN J, et al. Effect of chemical and physical heterogeneities on colloid-facilitated cesium transport[J]. Journal of Contaminant Hydrology, 2018, 213: 22-27. doi: 10.1016/j.jconhyd.2018.03.012

    [11]

    MAO M, ZHENG X L, CHEN C, et al. Coupled effect of flow velocity and structural heterogeneity on transport and release of kaolinite colloids in saturated porous media[J]. Environmental Science and Pollution Research, 2020, 27(28): 35065-35077. doi: 10.1007/s11356-020-09806-w

    [12] 张鹏远, 白冰, 蒋思晨. 孔隙结构和水动力对饱和多孔介质中颗粒迁移和沉积特性的耦合影响[J]. 岩土力学, 2016, 37(5): 1307-1316. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201605013.htm

    ZHANG Peng-yuan, BAI Bing, JIANG Si-chen. Coupled effects of hydrodynamic forces and pore structure on suspended particle transport and deposition in a saturated porous medium[J]. Rock and Soil Mechanics, 2016, 37(5): 1307-1316. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201605013.htm

    [13]

    GROLIMUND D, BORKOVEC M. Long-term release kinetics of colloidal particles from natural porous media[J]. Environmental Science & Technology, 1999, 33(22): 4054-4060.

    [14]

    PERDRIAL N, PERDRIAL J N, DELPHIN J E, et al. Temporal and spatial monitoring of mobile nanoparticles in a vineyard soil: evidence of nanoaggregate formation[J]. European Journal of Soil Science, 2010, 61(4): 456-468. doi: 10.1111/j.1365-2389.2010.01263.x

    [15] 薛传成, 王艳, 刘干斌, 等. 温度和pH对多孔介质中悬浮颗粒渗透迁移的影响[J]. 岩土工程学报, 2019, 41(11): 2112-2119. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201911020.htm

    XUE Chuan-cheng, WANG Yan, LIU Gan-bin, et al. Effects of temperature and pH on permeation and migration of suspended particles in porous media[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(11): 2112-2119. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201911020.htm

    [16] 何小松, 席北斗, 张鹏, 等. 地下水中溶解性有机物的季节变化特征及成因[J]. 中国环境科学, 2015, 35(3): 862-870. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ201503039.htm

    HE Xiao-song, XI Bei-dou, ZHANG Peng, et al. The seasonal distribution characteristics and its reasons of dissolved organic matter in groundwater[J]. China Environmental Science, 2015, 35(3): 862-870. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ201503039.htm

    [17] 唐章, 杨新瑶, 闫馨予, 等. 腐植酸和Cd2+对黏土胶粒在饱和多孔介质中迁移的影响[J]. 农业环境科学学报, 2019, 38(1): 111-116. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201901016.htm

    TANG Zhang, YANG Xin-yao, YAN Xin-yu, et al. Influence of humic acid and cadmium on the transport of clay colloids in saturated porous media[J]. Journal of Agro-Environment Science, 2019, 38(1): 111-116. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201901016.htm

    [18]

    YAN C R, CHENG T, SHANG J Y. Effect of bovine serum albumin on stability and transport of kaolinite colloid[J]. Water Research, 2019, 155: 204-213.

    [19]

    TIAN R, YANG G, LIU X M, et al. Observation of the unusual aggregation kinetics of colloidal minerals in acidic solutions[J]. Journal of Chemical Sciences, 2015, 127(6): 1083-1089.

    [20]

    YANG W, WANG Y, SHANG J Y, et al. Antagonistic effect of humic acid and naphthalene on biochar colloid transport in saturated porous media[J]. Chemosphere, 2017, 189: 556-564.

    [21]

    WANG Y, GAO B, MORALES V L, et al. Transport of titanium dioxide nanoparticles in saturated porous media under various solution chemistry conditions[J]. Journal of Nanoparticle Research, 2012, 14(9): 1-9.

    [22]

    TIAN Y, GAO B, SILVERA-BATISTA C, et al. Transport of engineered nanoparticles in saturated porous media[J]. Journal of Nanoparticle Research, 2010, 12(7): 2371-2380.

    [23]

    WANG C, BOBBA A D, ATTINTI R, et al. Retention and transport of silica nanoparticles in saturated porous media: effect of concentration and particle size[J]. Environmental Science & Technology, 2012, 46(13): 7151-7158.

图(6)  /  表(2)
计量
  • 文章访问数:  261
  • HTML全文浏览量:  32
  • PDF下载量:  158
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-25
  • 网络出版日期:  2022-12-01
  • 刊出日期:  2021-10-31

目录

/

返回文章
返回