3D visual model tests on stability of tunnel excavation surface based on transparent soil
-
摘要: 为研究承压渗流条件下复合地层盾构开挖面失稳破坏模式及支护压力,自行研发了一种可以自由施加多种渗流承压作用的三维可视化盾构开挖面稳定性模型试验系统。该系统首次采用两种不同透明土材料模拟黏土-砂砾石复合地层,不仅可以消除原样砂砾的粒径效应,而且可以清晰演示复合地层内部变形过程,并基于数字图像测量技术和自行编写的三维地形位移场重构程序可精准获取开挖面三维破坏体视图。应用该设备进行了7组盾构隧道不同埋径比(C/D=0.5,1.0,2.0)的模型试验,系统研究黏土-砂砾石复合地层有无承压水渗流条件下盾构隧道开挖面稳定性。试验结果表明:有无承压水渗流条件下,支护压力随开挖面后撤位移曲线均存在明显3个阶段;临界破坏状态下,模型试验得到的破坏体形态与隧道埋径比C/D有关,隧道浅埋与深埋时破坏体形态存在不同,此外,破坏体形态还与土层类别息息相关,不同土层中土体破坏形态也不尽相同;相比无渗流条件,承压渗流条件下开挖面土体失稳破坏区域影响范围更广。同时,以上试验也表明了该试验系统可形象地再现盾构开挖面失稳破坏演化过程,具有采集精度高、稳定性好和可操作性强等优势,适用于各种复杂工况下复合地层开挖面稳定性研究。Abstract: To study the supporting pressure and instability failure modes of shield tunnel face in composite soil strata under seepage and confined water, a three-dimensional visualized model test system for tunnel face stability is invented to freely exert multiple seepage and confining effects. For the first time, the system uses two different transparent soil materials to simulate a clay-gravel composite stratum, which can eliminate the particle size effect and demonstrate the internal deformation of the composite stratum clearly. Based on the digital image measurement technology and a self-written 3D reconstruction program, the 3D failure mode view of the excavation surface can be obtained accurately. A series of model tests are carried out to investigate the failure modes of the tunnel face with three different cover-to-diameter ratios of 0.5, 1.0 and 2.0 under seepage and confined water in clay-gravel composite strata. The test results show that the curve of the supporting pressure can be divided into three phases. In the critical failure state, the shape of the failure modes is related to the tunnel diameter ratio C/D obtained by the model tests. The shape of the failure modes is different when the tunnel covered depth is relatively small or large. In addition, the shape of the failure modes is also related to the type of soil strata. Compared to that under no seepage, the soil failure zone of the excavation surface under seepage confined water has a wider influence range. At the same time, the test system can vividly reproduce the evolution process and development law of the failure zone on the tunnel face. It has the advantages of high sensitivity, good stability and strong operability. It can be used to study the stability of the tunnel face under various complex conditions.
-
Keywords:
- shield tunnel /
- composite stratum /
- tunnel face stability /
- transparent soil /
- model test
-
-
表 1 隧道开挖面稳定试验方案
Table 1 Schemes of tunnel face stability
工况 地层 渗流/承压水 埋深/直径(C/D) 工况1 黏土-砂砾石 无 0.5 工况2 黏土-砂砾石 无 1 工况3 黏土-砂砾石 无 2 工况4 黏土-砂砾石 有/3D 0.5 工况5 黏土-砂砾石 有/3D 1 工况6 黏土-砂砾石 有/3D 2 工况7 黏土 无 1 注: C为隧道上覆土层厚度,D为隧道直径。 -
[1] KIRSCH A. Experimental investigation of the face stability of shallow tunnels in sand[J]. Acta Geotechnica, 2010, 5(1): 43-62. doi: 10.1007/s11440-010-0110-7
[2] 吕玺琳, 曾盛, 王远鹏, 等. 饱和圆砾地层盾构隧道开挖面稳定性物理模型试验[J]. 岩土工程学报, 2019, 41(增刊2): 129-132. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2019S2034.htm LÜ Xi-lin, ZENG Sheng, WANG Yuan-peng, et al. Physical model tests on stability of shield tunnel face in saturated gravel stratum[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 129-132. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2019S2034.htm
[3] 李君, 陈仁朋, 孔令刚. 干砂地层中盾构开挖面失稳模式及土拱效应试验研究[J]. 土木工程学报, 2011, 44(7): 142-148. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201107021.htm LI Jun, CHEN Reng-peng, KONG Ling-gang. Model test study of the failure mechanism of shallow tunnels in dry sands[J]. China Civil Engineering Journal, 2011, 44(7): 142-148. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201107021.htm
[4] 陈仁朋, 李君, 陈云敏, 等. 干砂盾构开挖面稳定性模型试验研究[J]. 岩土工程学报, 2011, 33(1): 117-122. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201101022.htm CHEN Reng-peng, LI Jun, CHEN Yun-min, et al. Large-scale tests on face stability of shield tunnelling in dry cohesionless soil[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(1): 117-122. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201101022.htm
[5] LÜ X L, ZHOU Y C, HUANG M S, et al. Experimental study of the face stability of shield tunnel in sands under seepage condition[J]. Tunnelling & Underground Space Technology, 2018, 74: 195-205.
[6] 刘海宁, 张亚峰, 刘汉东, 等. 砂土地层中泥水盾构掌子面主动破坏模式试验研究[J]. 岩石力学与工程学报, 2019, 38(3): 572-581. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201903013.htm LIU Hai-ning, ZHANG Ya-feng, LIU Han-dong, et al. Experimental study on active failure modes of slurry shield-driven tunnel faces in sand[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(3): 572-581. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201903013.htm
[7] LÜ X, ZENG S, ZHAO Y C, et al. Physical model tests and discrete element simulation of shield tunnel face stability in anisotropic granular media[J]. Acta Geotechnica, 2020, 15(10): 3017-3026. doi: 10.1007/s11440-020-01041-4
[8] 米博, 项彦勇. 砂土地层浅埋盾构隧道开挖渗流稳定性的模型试验和计算研究[J]. 岩土力学, 2020, 41(3): 117-128. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202003014.htm MI Bo, XIANG Yan-yong. Model test and calculation analysis of excavation-seepage stability for shallow shield tunneling in sandy ground[J]. Rock and Soil Mechanics, 2020, 41(3): 117-128. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202003014.htm
[9] WALLACE J F, RUTHERFORD C J. Geotechnical properties of LAPONITE RD®[J]. Geotechnical Testing Journal, 2015, 38(5): 574-587.
[10] CARVALHO T, SUESCUN-FLOREZ E, OMIDVAR M, et al. A nonviscous water-based pore fluid for modeling with transparent soils[J]. Geotechnical Testing Journal, 2015, 38(5): 20140278.
[11] 马少坤, 王博, 刘莹, 等. 南宁地铁区域饱和圆砾土大型动三轴试验研究[J]. 岩土工程学报, 2019, 41(1): 168-174. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201901023.htm MA Shao-kun, WANG Bo, LIU Ying, et al. Large-scale dynamic triaxial tests on saturated gravel soil in Nanning metro area[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 168-174. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201901023.htm
[12] WEAST R C. Handbook of Chemistry and Physics[M]. Boca Raton: CRC Press, 1985.
[13] LEE C J, WU B R, CHEN H T, et al. Tunnel stability and arching effects during tunneling in soft clayey soil[J]. Tunnelling & Underground Space Technology Incorporating Trenchless Technology Research, 2006, 21(2): 119-132.
[14] WANG P P, GUO X X, SANG Y, et al. Measurement of local and volumetric deformation in geotechnical triaxial testing using 3D-digital image correlation and a subpixel edge detection algorithm[J]. Acta Geotechnica, 2020, 15(10): 2891-2904.
[15] 王鹏鹏, 郭晓霞, 桑勇, 等. 基于数字图像相关技术的砂土全场变形测量及其DEM数值模拟[J]. 工程力学, 2020, 37(1): 239-247. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX202001028.htm WANG Peng-peng, GUO Xiao-xia, SANG Yong, et al. Full-field deformation measurement of sand using the digital image correlation technique and numerical simulation using the discrete element method[J]. Engineering Mechanics, 2020, 37(1): 239-247. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX202001028.htm
[16] WANG P P, SANG Y, GUO X X, et al. A novel optical method for measuring 3D full-field strain deformation in geotechnical tri-axial testing[J]. Measurement Science and Technology, 2019, 31(1): 015403.
[17] WANG P P, SANG Y, SHAO L T, et al. Measurement of the deformation of sand in a plane strain compression experiment using incremental digital image correlation[J]. Acta Geotechnica, 2019, 14(2): 547-557.
[18] 赵红华, 刘聪, 唐小微, 等. 基于透明土和三维重构技术的空间变形可视化测量系统的研究[J]. 岩土力学, 2020, 41(9): 3170-3179. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202009035.htm ZHAO Hong-hua, LIU Cong, TANG Xiao-wei, et al. Research on the visualization measurement system of spatial deformation based on transparent soil and three dimensional reconstruction technology[J]. Chinese Journal of Geotechnical Engineering, 2020, 41(9): 3170-3179. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202009035.htm
[19] HUANG B, ZHANG Y, FU X, et al. Study on visualization and failure mode of model test of rock-socketed pile in soft rock[J]. Geotechnical Testing Journal, 2019, 42(6): 1624-1639.
[20] YUAN B X, LIU J Y, CHEN W W, et al. Development of a robust Stereo-PIV system for 3-D soil deformation measurement[J]. Journal of Testing and Evaluation, 2012, 40(2): 256-264.