• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

橡胶支座在浅埋地下框架结构中的减震效果研究

杜修力, 刘迪, 许成顺, 刘洪涛, 李洋

杜修力, 刘迪, 许成顺, 刘洪涛, 李洋. 橡胶支座在浅埋地下框架结构中的减震效果研究[J]. 岩土工程学报, 2021, 43(10): 1761-1770. DOI: 10.11779/CJGE202110001
引用本文: 杜修力, 刘迪, 许成顺, 刘洪涛, 李洋. 橡胶支座在浅埋地下框架结构中的减震效果研究[J]. 岩土工程学报, 2021, 43(10): 1761-1770. DOI: 10.11779/CJGE202110001
DU Xiu-li, LIU Di, XU Cheng-shun, LIU Hong-tao, LI Yang. Seismic mitigation effect of shallow-covered underground frame station with rubber bearings[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(10): 1761-1770. DOI: 10.11779/CJGE202110001
Citation: DU Xiu-li, LIU Di, XU Cheng-shun, LIU Hong-tao, LI Yang. Seismic mitigation effect of shallow-covered underground frame station with rubber bearings[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(10): 1761-1770. DOI: 10.11779/CJGE202110001

橡胶支座在浅埋地下框架结构中的减震效果研究  English Version

基金项目: 

国家重点研发计划项目 2018YFC1504305

国家自然科学基金项目 U1839201

国家自然科学基金青年科学基金项目 51908553

详细信息
    作者简介:

    杜修力(1962— ),男,博士,教授,主要从事地震工程领域的研究。E-mail:duxiuli@bjut.edu.cn

    通讯作者:

    许成顺, E-mail:xuchengshun@bjut.edu.cn

  • 中图分类号: TU352;TU435

Seismic mitigation effect of shallow-covered underground frame station with rubber bearings

  • 摘要: 基于浅埋地下框架结构的破坏机理和减小中柱水平变形的局部减震设计理念,探讨了橡胶支座在地下车站结构中的适用性和有效性。首先从理论上阐明了地下车站中柱柱顶设置橡胶支座的减震原理,然后建立橡胶支座的三维精细化有限元模型,采用动力时程分析方法,对比研究了天然叠层橡胶支座(LNR)和铅芯橡胶支座(LRB)两种类型减震装置在地下车站中的减震效果。最后,探讨了橡胶支座水平刚度特性对结构体系减震效果的影响规律。研究表明:柱顶设置橡胶支座改变了结构的抗侧力分配,大幅度降低了地下车站中柱的地震响应,并且相比于LRB,LNR表现出更好的减震效果。此外,随着LNR水平刚度的增大,中柱的减震效果逐渐减弱,但对支座位移及侧墙变形起到了有利的控制作用。因此,合理地选择橡胶支座类型及参数,可实现地下结构的减震控制和支座性能的优化。
    Abstract: Based on the damage mechanism of shallow-covered underground frame structures and the local seismic mitigation design concept of reducing the horizontal deformation of center column, the applicability and effectiveness of rubber bearings in underground stations are discussed. Firstly, the seismic mitigation principle of the rubber bearings setting at the top of center column is expounded theoretically. And then the three-dimensional refined finite element model for the rubber bearings is established, and the seismic mitigation effects of laminated rubber bearing and lead rubber bearing in the subway station are compared by using the dynamic time history methods. Finally, the influences of horizontal stiffness of the rubber bearings on the seismic mitigation effect of the structural system are further studied. The numerical results indicate that the seismic mitigation structure installed with the rubber bearings changes the distribution of the lateral force and greatly reduces the seismic response of the center column. Compared with the LRB, LNR shows a better seismic mitigation effect. In addition, as the horizontal stiffness of LNR increases, the seismic mitigation effect of the center column gradually weakens, but it exerts a favorable control effect on the deformation of the rubber bearing and sidewall. Therefore, the seismic mitigation control of underground structures and the optimization of bearing performance can be realized by reasonably selecting the type and parameters of the rubber bearings.
  • 图  1   橡胶支座构造示意图

    Figure  1.   Schematic diagram of rubber bearings

    图  2   支撑柱构造示意图

    Figure  2.   Structural diagram of columns

    图  3   等效水平刚度模型

    Figure  3.   Equivalent horizontal stiffness model

    图  4   大开地铁车站横断面示意图

    Figure  4.   Cross section of Dakai subway station

    图  5   三维动力时程分析有限元模型

    Figure  5.   Three-dimensional finite element model for dynamic time-history analysis

    图  6   阪神地震神户大学记录

    Figure  6.   Acceleration time history at Kobe University

    图  7   支座压应力时程曲线

    Figure  7.   Compressive stress time-history curve of rubber bearings

    图  8   不同地震强度工况下中柱水平变形时程曲线

    Figure  8.   Time-history curves of horizontal deformation of center columns

    图  9   中柱动力响应及极限变形能力包络线

    Figure  9.   Dynamic responses and envelopes of center columns

    图  10   刚度比和结构动力响应关系曲线图

    Figure  10.   Relation curves of stiffness ratio and structural dynamic response

    表  1   模型工况参数

    Table  1   Parameters of models

    工况编号地震强度/g车站结构形式支座类型
    DE-10.2原型车站结构
    DE-20.2新型减震结构LNR
    DE-30.2新型减震结构LRB
    SDE-10.4原型车站结构
    SDE-20.4新型减震结构LNR
    SDE-30.4新型减震结构LRB
    下载: 导出CSV

    表  2   橡胶支座设计参数

    Table  2   Design parameters of rubber bearings

    支座类型外连接钢板尺寸/(mm×mm)有效宽度/mm橡胶层厚度/mm钢板层厚度/mm铅芯直径/mm第一形状系数第二形状系数
    LNB550×5004504 mm×20层2 mm×19层28.135.63
    LRB550×5004504 mm×20层2 mm×19层11026.815.63
    下载: 导出CSV

    表  3   大开车站土层参数

    Table  3   Material properties of soil layers close to Dakai station

    编号土层性质深度/m密度/(kg·m-3)泊松比初始剪切波速/(m·s-1)等效剪切模量/MPa等效阻尼比/%黏聚力/kPa摩擦角/(°)
    0.2g0.4g0.2g0.4g
    1人工填土0~1.019000.33314036.25635.6792.3072.8272015
    2全新世砂土1.0~5.119000.48814014.7469.08410.31014.494140
    3全新世砂土5.1~8.319000.49317012.5676.28914.23819.220140
    4更新世黏土8.3~11.419000.49419048.56940.6988.84911.7333020
    5更新世黏土11.4~17.219000.49024082.49570.4477.74610.4443020
    6更新世砂土17.2~39.220000.48733090.09542.9759.30715.564140
    下载: 导出CSV

    表  4   不同工况下结构侧墙底部截面内力值

    Table  4   Sectional forces at bottom section of sidewall in different cases

    工况剪力/kN减震率/%轴力/kN减震率/%弯矩/(kN·m)减震率/%
    DE-11523.0-4388.0-1310.0
    DE-21685.0-10.64-4651.0-5.99-1430.0-9.16
    DE-31580.0-3.74-4571.0-4.17-1403.0-7.10
    SDE-11884.0-4929.0-1455.0
    SDE-21934.0-2.65-5079.0-3.04-1504.0-3.37
    SDE-31923.0-2.07-4973.0-0.89-1502.0-3.23
    下载: 导出CSV

    表  5   不同工况下结构中柱底部截面内力值

    Table  5   Sectional forces at bottom section of column in different cases

    工况剪力/kN减震率/%轴力/kN减震率/%弯矩/(kN·m)减震率/%
    DE-1522.5-4643.0-488.4
    DE-288.283.12-4629.00.30-139.471.46
    DE-3160.969.21-4626.00.37-313.835.75
    SDE-1611.8-4929.0-585.3
    SDE-2291.152.39-5185.0-5.19-419.428.34
    SDE-3320.347.65-5420.0-9.96-492.115.92
    下载: 导出CSV

    表  6   不同工况下结构关键构件水平变形值

    Table  6   Horizontal deformation values of key structural components in different cases

    工况侧墙峰值水平变形/m减震率/%中柱峰值水平变形/m减震率/%支座峰值水平变形/m
    DE-10.02410.0244
    DE-20.0267-10.800.003286.770.0256
    DE-30.0264-9.420.010258.140.0187
    SDE-10.08670.1020
    SDE-20.0923-6.460.021279.170.0952
    SDE-30.0919-6.030.034666.090.0759
    下载: 导出CSV

    表  7   模型工况参数

    Table  7   Parameters of models

    工况支座类型橡胶剪切模量/MPa橡胶层厚度/mm第一形状系数第二形状系数等效水平刚度计算值/(kN·mm-1)等效水平刚度模拟值/(kN·mm-1)刚度比
    DR-1LNR0.644 mm×24层28.1254.692.702.680.078
    DR-2LNR0.644 mm×23层28.1254.892.822.840.082
    DR-3LNR0.644 mm×22层28.1255.112.952.980.086
    DR-4LNR0.644 mm×21层28.1255.363.093.120.090
    DR-5LNR0.644 mm×20层28.1255.633.243.210.094
    NB-1LNR0.304 mm×20层28.1255.631.521.480.044
    NB-2LNR0.454 mm×20层28.1255.632.282.320.065
    NB-3LNR0.644 mm×20层28.1255.633.243.160.094
    NB-4LNR1.064 mm×20层28.1255.635.375.420.156
    NB-5LNR1.724 mm×20层28.1255.638.718.760.253
    下载: 导出CSV
  • [1]

    NAKAMURA S, YOSHIDA N, IWATATE T. Damage to Daikai Subway Station During the 1995 Hyogoken-Nambu Earthquake and Its Investigation[R]. Japan Society of Civil Engineers, Committee of Earthquake Engineering, 1996: 287-295.

    [2] 杜修力, 李洋, 许成顺, 等. 1995年日本阪神地震大开地铁车站震害原因及成灾机理分析研究进展[J]. 岩土工程学报, 2018, 40(2): 223-236. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201802003.htm

    DU Xiu-li, LI Yang, XU Cheng-shun, et al. Review on damage causes and disaster mechanism of Daikai subway station during 1995 Osaka-Kobe Earthquake[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(2): 223-236. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201802003.htm

    [3]

    IIDA H, HIROTO T, YOSHIDA N, et al. Damage to Daikai subway station[J]. Soils and Foundations, 1996, 36(S0): 283-300.

    [4]

    AN X, SHAWKY A A, MAEKAWA K. The collapse mechanism of a subway station during the Great Hanshin earthquake[J]. Cement and Concrete Composites, 1997, 19(3): 241-257. doi: 10.1016/S0958-9465(97)00014-0

    [5]

    XU C S, ZHANG Z H, LI Y, et al. Validation of a numerical model based on dynamic centrifuge tests and studies on the earthquake damage mechanism of underground frame structures[J]. Tunnelling and Underground Space Technology, 2020, 104(3): 103538.

    [6] 杜修力, 王子理, 刘洪涛. 基于韧性设计的一种地下框架结构抗震新体系研究[J]. 震灾防御技术, 2018, 13(3): 493-501. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZFY201803002.htm

    DU Xiu-li, WANG Zi-li, LIU Hong-tao. Study of a seismic new system of underground frame structure based on toughness design[J]. Technology for Earthquake Disaster Prevention, 2018, 13(3): 493-501. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZZFY201803002.htm

    [7] 李小强. 采用加芯柱和分体柱的地铁地下车站抗震性能研究[D]. 西安: 长安大学, 2018.

    LI Xiao-qiang. Study on Seismic Performance of Subway Stations Use Core Column and Split Column[D]. Xi'an: Chang'an University, 2018. (in Chinese)

    [8]

    LU D C, WU C Y, MA C, et al. A novel segmental cored column for upgrading the seismic performance of underground frame structures[J]. Soil Dynamics and Earthquake Engineering, 2020, 131: 106011. doi: 10.1016/j.soildyn.2019.106011

    [9]

    CHEN Z Y, CHEN W, BIAN G Q. Seismic performance upgrading for underground structures by introducing shear panel dampers[J]. Advances in Structural Engineering, 2014, 17(9): 1343-1357. doi: 10.1260/1369-4332.17.9.1343

    [10]

    CHEN Z Y, ZHAO H, LOU M L. Seismic performance and optimal design of framed underground structures with lead-rubber bearings[J]. Structural Engineering and Mechanics, 2016, 58(2): 259-276. doi: 10.12989/sem.2016.58.2.259

    [11] 杜修力, 许紫刚, 许成顺, 等. 摩擦摆支座在地下地铁车站结构中的减震效果研究[J]. 工程力学, 2019, 36(9): 60-67, 88. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201909009.htm

    DU Xiu-li, XU Zi-gang, XU Cheng-shun. Seismic mitigation effect analysis on friction pendulum bearing applied in the underground subway station[J]. Engineering Mechanics, 2019, 36(9): 60-67, 88. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201909009.htm

    [12]

    MA C, LU D C, DU X L. Seismic performance upgrading for underground structures by introducing sliding isolation bearings[J]. Tunnelling and Underground Space Technology, 2018, 74: 1-9. doi: 10.1016/j.tust.2018.01.007

    [13] 周锡元, 曾德民. 橡胶支座与R/C柱串联隔震系统水平刚度系数[J]. 振动工程学报, 1999, 12(2): 157-165. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC902.001.htm

    ZHOU Xi-yuan, ZENG De-min. Horizontal rigidity coefficient of the serial system of rubber bearing with column[J]. Journal of Vibration Engineering, 1999, 12(2): 157-165. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC902.001.htm

    [14] 马长飞, 谭平, 张亚辉, 等. 考虑PΔ效应的柱顶隔震结构的动力响应分析[J]. 土木工程学报, 2010, 43(增刊1): 230-234. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2010S1042.htm

    MA Chang-fei, TAN Ping, ZHANG Ya-hui, et al. Dynamic responses analysis of structures with isolators on the top of the columns considering PΔ effects[J]. China Civil Engineering Journal, 2010, 43(S1): 230-234. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2010S1042.htm

    [15] 杜永峰, 吴忠铁. 考虑初始位移的串联隔震体系竖向承载力有限元分析[J]. 土木工程学报, 2012, 45(增刊2): 128-132. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2012S2030.htm

    DU Yong-feng, WU Zhong-tie. Finite element analysis of vertical loading capacity of serial seismic isolation system with the initial displacement[J]. China Civil Engineering Journal, 2012, 45(S2): 128-132. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2012S2030.htm

    [16]

    XU Z G, DU X L, XU C S, et al. Numerical analyses of seismic performance of underground and aboveground structures with friction pendulum bearings[J]. Soil Dynamics and Earthquake Engineering, 2020, 130: 105967.

    [17] 建筑抗震设计规范:GB 50011—2010[S]. 2010.

    Code for Seismic Design of Buildings: GB 50011—2010[S]. 2010. (in Chinese)

    [18] 郑明军, 王文静, 陈政南, 等. 橡胶Mooney-Rivlin模型力学性能常数的确定[J]. 橡胶工业, 2003, 50(8): 462-465. https://www.cnki.com.cn/Article/CJFDTOTAL-XJGY200308003.htm

    ZHENG Ming-jun, WANG Wen-jing, CHEN Zheng-nan, et al. Determination for mechanical constants of rubber Mooney-Rivlin model[J]. China Rubber Industry, 2003, 50(8): 462-465. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XJGY200308003.htm

    [19]

    DAS B M. Advanced Soil Mechanics[M]. 3rd ed. New York: Taylor and Francis, 2008.

    [20] 杜修力, 李洋, 赵密, 等. 下卧刚性基岩条件下场地土-结构体系地震反应分析方法研究[J]. 工程力学, 2017, 34(5): 52-59. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201705006.htm

    DU Xiu-li, LI Yang, ZHAO Mi, et al. Seismic response analysis method for soil-structure interaction system of underlying rigid rock base soil condition[J]. Engineering Mechanics, 2017, 34(5): 52-59. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201705006.htm

    [21]

    LI Y, ZHAO M, XU C S, et al. Earthquake input for finite element analysis of soil-structure interaction on rigid bedrock[J]. Tunnelling and Underground Space Technology, 2018, 79: 250-262.

    [22] 城市轨道交通结构抗震设计规范:GB 50909—2014[S]. 2014.

    Code for Seismic Design of Urban Rail Transit Structures: GB 50909—2014[S]. 2014. (in Chinese)

    [23]

    KUHLMEYER R L, LYSMER J. Finite element method accuracy for wave propagation problems[J]. ASCE, Soil Mechanics and Foundation Division Journal, 1973, 99(5): 421-427.

    [24] 叶昆, 张子翔, 朱宏平. 近场地震竖向分量对LRB基础隔震结构地震响应影响分析[J]. 工程力学, 2016, 33(4): 49-57. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201604009.htm

    YE Kun, ZHANG Zi-xiang, ZHU Hong-ping. Influence of near-field vertical ground motions on the seismic response of LRB base-isolated structures[J]. Engineering Mechanics, 2016, 33(4): 49-57. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201604009.htm

图(10)  /  表(7)
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-15
  • 网络出版日期:  2022-12-02
  • 刊出日期:  2021-09-30

目录

    /

    返回文章
    返回