Seismic mitigation effect of shallow-covered underground frame station with rubber bearings
-
摘要: 基于浅埋地下框架结构的破坏机理和减小中柱水平变形的局部减震设计理念,探讨了橡胶支座在地下车站结构中的适用性和有效性。首先从理论上阐明了地下车站中柱柱顶设置橡胶支座的减震原理,然后建立橡胶支座的三维精细化有限元模型,采用动力时程分析方法,对比研究了天然叠层橡胶支座(LNR)和铅芯橡胶支座(LRB)两种类型减震装置在地下车站中的减震效果。最后,探讨了橡胶支座水平刚度特性对结构体系减震效果的影响规律。研究表明:柱顶设置橡胶支座改变了结构的抗侧力分配,大幅度降低了地下车站中柱的地震响应,并且相比于LRB,LNR表现出更好的减震效果。此外,随着LNR水平刚度的增大,中柱的减震效果逐渐减弱,但对支座位移及侧墙变形起到了有利的控制作用。因此,合理地选择橡胶支座类型及参数,可实现地下结构的减震控制和支座性能的优化。Abstract: Based on the damage mechanism of shallow-covered underground frame structures and the local seismic mitigation design concept of reducing the horizontal deformation of center column, the applicability and effectiveness of rubber bearings in underground stations are discussed. Firstly, the seismic mitigation principle of the rubber bearings setting at the top of center column is expounded theoretically. And then the three-dimensional refined finite element model for the rubber bearings is established, and the seismic mitigation effects of laminated rubber bearing and lead rubber bearing in the subway station are compared by using the dynamic time history methods. Finally, the influences of horizontal stiffness of the rubber bearings on the seismic mitigation effect of the structural system are further studied. The numerical results indicate that the seismic mitigation structure installed with the rubber bearings changes the distribution of the lateral force and greatly reduces the seismic response of the center column. Compared with the LRB, LNR shows a better seismic mitigation effect. In addition, as the horizontal stiffness of LNR increases, the seismic mitigation effect of the center column gradually weakens, but it exerts a favorable control effect on the deformation of the rubber bearing and sidewall. Therefore, the seismic mitigation control of underground structures and the optimization of bearing performance can be realized by reasonably selecting the type and parameters of the rubber bearings.
-
-
表 1 模型工况参数
Table 1 Parameters of models
工况编号 地震强度/g 车站结构形式 支座类型 DE-1 0.2 原型车站结构 无 DE-2 0.2 新型减震结构 LNR DE-3 0.2 新型减震结构 LRB SDE-1 0.4 原型车站结构 无 SDE-2 0.4 新型减震结构 LNR SDE-3 0.4 新型减震结构 LRB 表 2 橡胶支座设计参数
Table 2 Design parameters of rubber bearings
支座类型 外连接钢板尺寸/(mm×mm) 有效宽度/mm 橡胶层厚度/mm 钢板层厚度/mm 铅芯直径/mm 第一形状系数 第二形状系数 LNB 550×500 450 4 mm×20层 2 mm×19层 — 28.13 5.63 LRB 550×500 450 4 mm×20层 2 mm×19层 110 26.81 5.63 表 3 大开车站土层参数
Table 3 Material properties of soil layers close to Dakai station
编号 土层性质 深度/m 密度/(kg·m-3) 泊松比 初始剪切波速/(m·s-1) 等效剪切模量/MPa 等效阻尼比/% 黏聚力/kPa 摩擦角/(°) 0.2g 0.4g 0.2g 0.4g 1 人工填土 0~1.0 1900 0.333 140 36.256 35.679 2.307 2.827 20 15 2 全新世砂土 1.0~5.1 1900 0.488 140 14.746 9.084 10.310 14.494 1 40 3 全新世砂土 5.1~8.3 1900 0.493 170 12.567 6.289 14.238 19.220 1 40 4 更新世黏土 8.3~11.4 1900 0.494 190 48.569 40.698 8.849 11.733 30 20 5 更新世黏土 11.4~17.2 1900 0.490 240 82.495 70.447 7.746 10.444 30 20 6 更新世砂土 17.2~39.2 2000 0.487 330 90.095 42.975 9.307 15.564 1 40 表 4 不同工况下结构侧墙底部截面内力值
Table 4 Sectional forces at bottom section of sidewall in different cases
工况 剪力/kN 减震率/% 轴力/kN 减震率/% 弯矩/(kN·m) 减震率/% DE-1 1523.0 — -4388.0 — -1310.0 — DE-2 1685.0 -10.64 -4651.0 -5.99 -1430.0 -9.16 DE-3 1580.0 -3.74 -4571.0 -4.17 -1403.0 -7.10 SDE-1 1884.0 — -4929.0 — -1455.0 — SDE-2 1934.0 -2.65 -5079.0 -3.04 -1504.0 -3.37 SDE-3 1923.0 -2.07 -4973.0 -0.89 -1502.0 -3.23 表 5 不同工况下结构中柱底部截面内力值
Table 5 Sectional forces at bottom section of column in different cases
工况 剪力/kN 减震率/% 轴力/kN 减震率/% 弯矩/(kN·m) 减震率/% DE-1 522.5 — -4643.0 — -488.4 — DE-2 88.2 83.12 -4629.0 0.30 -139.4 71.46 DE-3 160.9 69.21 -4626.0 0.37 -313.8 35.75 SDE-1 611.8 — -4929.0 — -585.3 — SDE-2 291.1 52.39 -5185.0 -5.19 -419.4 28.34 SDE-3 320.3 47.65 -5420.0 -9.96 -492.1 15.92 表 6 不同工况下结构关键构件水平变形值
Table 6 Horizontal deformation values of key structural components in different cases
工况 侧墙峰值水平变形/m 减震率/% 中柱峰值水平变形/m 减震率/% 支座峰值水平变形/m DE-1 0.0241 — 0.0244 — — DE-2 0.0267 -10.80 0.0032 86.77 0.0256 DE-3 0.0264 -9.42 0.0102 58.14 0.0187 SDE-1 0.0867 — 0.1020 — — SDE-2 0.0923 -6.46 0.0212 79.17 0.0952 SDE-3 0.0919 -6.03 0.0346 66.09 0.0759 表 7 模型工况参数
Table 7 Parameters of models
工况 支座类型 橡胶剪切模量/MPa 橡胶层厚度/mm 第一形状系数 第二形状系数 等效水平刚度计算值/(kN·mm-1) 等效水平刚度模拟值/(kN·mm-1) 刚度比 DR-1 LNR 0.64 4 mm×24层 28.125 4.69 2.70 2.68 0.078 DR-2 LNR 0.64 4 mm×23层 28.125 4.89 2.82 2.84 0.082 DR-3 LNR 0.64 4 mm×22层 28.125 5.11 2.95 2.98 0.086 DR-4 LNR 0.64 4 mm×21层 28.125 5.36 3.09 3.12 0.090 DR-5 LNR 0.64 4 mm×20层 28.125 5.63 3.24 3.21 0.094 NB-1 LNR 0.30 4 mm×20层 28.125 5.63 1.52 1.48 0.044 NB-2 LNR 0.45 4 mm×20层 28.125 5.63 2.28 2.32 0.065 NB-3 LNR 0.64 4 mm×20层 28.125 5.63 3.24 3.16 0.094 NB-4 LNR 1.06 4 mm×20层 28.125 5.63 5.37 5.42 0.156 NB-5 LNR 1.72 4 mm×20层 28.125 5.63 8.71 8.76 0.253 -
[1] NAKAMURA S, YOSHIDA N, IWATATE T. Damage to Daikai Subway Station During the 1995 Hyogoken-Nambu Earthquake and Its Investigation[R]. Japan Society of Civil Engineers, Committee of Earthquake Engineering, 1996: 287-295.
[2] 杜修力, 李洋, 许成顺, 等. 1995年日本阪神地震大开地铁车站震害原因及成灾机理分析研究进展[J]. 岩土工程学报, 2018, 40(2): 223-236. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201802003.htm DU Xiu-li, LI Yang, XU Cheng-shun, et al. Review on damage causes and disaster mechanism of Daikai subway station during 1995 Osaka-Kobe Earthquake[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(2): 223-236. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201802003.htm
[3] IIDA H, HIROTO T, YOSHIDA N, et al. Damage to Daikai subway station[J]. Soils and Foundations, 1996, 36(S0): 283-300.
[4] AN X, SHAWKY A A, MAEKAWA K. The collapse mechanism of a subway station during the Great Hanshin earthquake[J]. Cement and Concrete Composites, 1997, 19(3): 241-257. doi: 10.1016/S0958-9465(97)00014-0
[5] XU C S, ZHANG Z H, LI Y, et al. Validation of a numerical model based on dynamic centrifuge tests and studies on the earthquake damage mechanism of underground frame structures[J]. Tunnelling and Underground Space Technology, 2020, 104(3): 103538.
[6] 杜修力, 王子理, 刘洪涛. 基于韧性设计的一种地下框架结构抗震新体系研究[J]. 震灾防御技术, 2018, 13(3): 493-501. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZFY201803002.htm DU Xiu-li, WANG Zi-li, LIU Hong-tao. Study of a seismic new system of underground frame structure based on toughness design[J]. Technology for Earthquake Disaster Prevention, 2018, 13(3): 493-501. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZZFY201803002.htm
[7] 李小强. 采用加芯柱和分体柱的地铁地下车站抗震性能研究[D]. 西安: 长安大学, 2018. LI Xiao-qiang. Study on Seismic Performance of Subway Stations Use Core Column and Split Column[D]. Xi'an: Chang'an University, 2018. (in Chinese)
[8] LU D C, WU C Y, MA C, et al. A novel segmental cored column for upgrading the seismic performance of underground frame structures[J]. Soil Dynamics and Earthquake Engineering, 2020, 131: 106011. doi: 10.1016/j.soildyn.2019.106011
[9] CHEN Z Y, CHEN W, BIAN G Q. Seismic performance upgrading for underground structures by introducing shear panel dampers[J]. Advances in Structural Engineering, 2014, 17(9): 1343-1357. doi: 10.1260/1369-4332.17.9.1343
[10] CHEN Z Y, ZHAO H, LOU M L. Seismic performance and optimal design of framed underground structures with lead-rubber bearings[J]. Structural Engineering and Mechanics, 2016, 58(2): 259-276. doi: 10.12989/sem.2016.58.2.259
[11] 杜修力, 许紫刚, 许成顺, 等. 摩擦摆支座在地下地铁车站结构中的减震效果研究[J]. 工程力学, 2019, 36(9): 60-67, 88. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201909009.htm DU Xiu-li, XU Zi-gang, XU Cheng-shun. Seismic mitigation effect analysis on friction pendulum bearing applied in the underground subway station[J]. Engineering Mechanics, 2019, 36(9): 60-67, 88. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201909009.htm
[12] MA C, LU D C, DU X L. Seismic performance upgrading for underground structures by introducing sliding isolation bearings[J]. Tunnelling and Underground Space Technology, 2018, 74: 1-9. doi: 10.1016/j.tust.2018.01.007
[13] 周锡元, 曾德民. 橡胶支座与R/C柱串联隔震系统水平刚度系数[J]. 振动工程学报, 1999, 12(2): 157-165. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC902.001.htm ZHOU Xi-yuan, ZENG De-min. Horizontal rigidity coefficient of the serial system of rubber bearing with column[J]. Journal of Vibration Engineering, 1999, 12(2): 157-165. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC902.001.htm
[14] 马长飞, 谭平, 张亚辉, 等. 考虑PΔ效应的柱顶隔震结构的动力响应分析[J]. 土木工程学报, 2010, 43(增刊1): 230-234. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2010S1042.htm MA Chang-fei, TAN Ping, ZHANG Ya-hui, et al. Dynamic responses analysis of structures with isolators on the top of the columns considering PΔ effects[J]. China Civil Engineering Journal, 2010, 43(S1): 230-234. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2010S1042.htm
[15] 杜永峰, 吴忠铁. 考虑初始位移的串联隔震体系竖向承载力有限元分析[J]. 土木工程学报, 2012, 45(增刊2): 128-132. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2012S2030.htm DU Yong-feng, WU Zhong-tie. Finite element analysis of vertical loading capacity of serial seismic isolation system with the initial displacement[J]. China Civil Engineering Journal, 2012, 45(S2): 128-132. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2012S2030.htm
[16] XU Z G, DU X L, XU C S, et al. Numerical analyses of seismic performance of underground and aboveground structures with friction pendulum bearings[J]. Soil Dynamics and Earthquake Engineering, 2020, 130: 105967.
[17] 建筑抗震设计规范:GB 50011—2010[S]. 2010. Code for Seismic Design of Buildings: GB 50011—2010[S]. 2010. (in Chinese)
[18] 郑明军, 王文静, 陈政南, 等. 橡胶Mooney-Rivlin模型力学性能常数的确定[J]. 橡胶工业, 2003, 50(8): 462-465. https://www.cnki.com.cn/Article/CJFDTOTAL-XJGY200308003.htm ZHENG Ming-jun, WANG Wen-jing, CHEN Zheng-nan, et al. Determination for mechanical constants of rubber Mooney-Rivlin model[J]. China Rubber Industry, 2003, 50(8): 462-465. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XJGY200308003.htm
[19] DAS B M. Advanced Soil Mechanics[M]. 3rd ed. New York: Taylor and Francis, 2008.
[20] 杜修力, 李洋, 赵密, 等. 下卧刚性基岩条件下场地土-结构体系地震反应分析方法研究[J]. 工程力学, 2017, 34(5): 52-59. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201705006.htm DU Xiu-li, LI Yang, ZHAO Mi, et al. Seismic response analysis method for soil-structure interaction system of underlying rigid rock base soil condition[J]. Engineering Mechanics, 2017, 34(5): 52-59. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201705006.htm
[21] LI Y, ZHAO M, XU C S, et al. Earthquake input for finite element analysis of soil-structure interaction on rigid bedrock[J]. Tunnelling and Underground Space Technology, 2018, 79: 250-262.
[22] 城市轨道交通结构抗震设计规范:GB 50909—2014[S]. 2014. Code for Seismic Design of Urban Rail Transit Structures: GB 50909—2014[S]. 2014. (in Chinese)
[23] KUHLMEYER R L, LYSMER J. Finite element method accuracy for wave propagation problems[J]. ASCE, Soil Mechanics and Foundation Division Journal, 1973, 99(5): 421-427.
[24] 叶昆, 张子翔, 朱宏平. 近场地震竖向分量对LRB基础隔震结构地震响应影响分析[J]. 工程力学, 2016, 33(4): 49-57. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201604009.htm YE Kun, ZHANG Zi-xiang, ZHU Hong-ping. Influence of near-field vertical ground motions on the seismic response of LRB base-isolated structures[J]. Engineering Mechanics, 2016, 33(4): 49-57. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201604009.htm