• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

残积土孔内剪切试验的强度特性及广义邓肯–张模型研究

安然, 孔令伟, 张先伟

安然, 孔令伟, 张先伟. 残积土孔内剪切试验的强度特性及广义邓肯–张模型研究[J]. 岩土工程学报, 2020, 42(9): 1723-1732. DOI: 10.11779/CJGE202009017
引用本文: 安然, 孔令伟, 张先伟. 残积土孔内剪切试验的强度特性及广义邓肯–张模型研究[J]. 岩土工程学报, 2020, 42(9): 1723-1732. DOI: 10.11779/CJGE202009017
AN Ran, KONG Ling-wei, ZHANG Xian-wei. Mechanical properties and generalized Duncan-Chang model for granite residual soils using borehole shear tests[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(9): 1723-1732. DOI: 10.11779/CJGE202009017
Citation: AN Ran, KONG Ling-wei, ZHANG Xian-wei. Mechanical properties and generalized Duncan-Chang model for granite residual soils using borehole shear tests[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(9): 1723-1732. DOI: 10.11779/CJGE202009017

残积土孔内剪切试验的强度特性及广义邓肯–张模型研究  English Version

详细信息
    作者简介:

    安然(1992—),男,安徽池州人,博士研究生,主要从事特殊土的力学特性与基坑工程研究。E-mail:arwhrsm@163.com

    通讯作者:

    孔令伟, E-mail:lwkong@whrsm.ac.cn

  • 中图分类号: TU432

Mechanical properties and generalized Duncan-Chang model for granite residual soils using borehole shear tests

  • 摘要: 花岗岩残积土广泛分布在中国东南沿海地区,是近地表花岗岩的风化产物。为了研究花岗岩残积土原位力学行为及其受风化程度的影响,开展不同深度土层的原位孔内剪切试验,获得了不同法向应力下的应力–应变关系曲线和广义邓肯–张模型参数。以砾粒含量表征残积土的风化程度,基于考虑砾粒含量影响的广义邓肯–张模型预测了土体的力学行为,并与实测数据进行对比。结果表明,花岗岩残积土的颗粒级配与土层深度有明显的关联性,用砾粒含量可以表征其风化程度;由孔内剪切试验得到应力–应变曲线呈应变硬化型特征;根据孔内剪切试验的应力–应变关系可以有效地反演广义邓肯–张双曲线模型参数,包括黏聚力c、内摩擦角φ、应力破坏比Rf以及拟合参数Kn;经回归分析发现5种参数均可由砾粒含量的相应函数关系进行拟合求解;由模型计算得到的应力–应变曲线与实测结果吻合度较高,说明采用广义邓肯–张模型描述花岗岩残积土的原位力学行为具有合理性,分析结果拓展了邓肯–张本构模型的适用范围。
    Abstract: Granite residual soil, as the weathering product of near-surface granite, is widely distributed in the southeast coastal areas of China. In order to study the influences of weathering degree on the in-situ mechanical properties of granite residual soil, the borehole shear tests are carried out for the residual soil along the depth of foundation pit. The in-situ stress-strian curves under different normal stresses and parameters of the Duncan-Chang model are obtained. Then, the regression relationships between the five model parameters and the weathering degree index represented by the gravel content are determined. According to the Duncan-Chang model, the stress-strain curves of residual soil with different weathering degrees are predicted and compared with the measured data. The results show that the grain compositions of residual soil are significantly correlated with the depth of soil layers. The stress-strain curves obtained by the borehole shear tests show the characteristics of strain-hardening deformation. According to φ the stress-strain relationship of in-situ tests, the parameters of the generalized Duncan-Chang model, including cohesion c, internal friction angle, stress failure ratio Rf and fitting parameters K and n, can be deduced effectively. Through regression analysis, the parameters can be fitted by the corresponding functions for the gravel content. The stress-strain curves calculated by the modified model are in good agreement with the experimental results, which shows that the generalized Duncan-Chang model can reasonably describe the in-situ mechanical behavior of granite residual soil. This study extends the applicability of the Duncan-Chang constitutive model.
  • 图  1   厦门花岗岩残积土的矿物成分与颗粒粒级结果

    Figure  1.   Results of mineral composition and grain size of granite residual soil in Xiamen

    图  2   孔内剪切试验仪器的示意图

    Figure  2.   Diagrammatic drawing of in-situ borehole shear testing devices

    图  3   花岗岩残积土BST应力–应变曲线(4~18 m)

    Figure  3.   Stress-strain curves of granite residual soil based on BST measurements (4~18 m)

    图  4   BST试验的剪切强度与法向应力的关系曲线

    Figure  4.   Relationship between shear strength and normal stress from BST results

    图  5   抗剪强度指标与砾粒含量的关系曲线

    Figure  5.   Relationship between shear strength and gravel content

    图  6   应力–应变双曲线的关系验证

    Figure  6.   Relational verification of stress-strain curves

    图  7   初始切线模量的适用性条件验证

    Figure  7.   Relational verification of initial tangent modulus

    图  8   基于孔内剪切试验的邓肯-张模型参数与砾粒含量的关系

    Figure  8.   Relationship between model parameters and gravel content based on borehole shear tests

    图  9   邓肯-张模型计算值与试验值比较

    Figure  9.   Comparison between calculated and test values

    表  1   土的基本物理力学性质指标

    Table  1   Basic physical and mechanical properties of soil

    埋深/m相对密度Gs天然密度ρ/(g·cm-3)孔隙比e0含水率/%液限/%塑限/%塑性指数渗透系数/(10-6m·s-1)砾粒含量G/%
    3.82.731.750.7426.748.327.221.17.1217.3
    5.62.721.750.7726.444.825.519.35.1716.5
    7.02.711.780.7827.047.924.523.45.3219.0
    8.02.731.810.7530.450.224.226.05.0118.9
    9.22.731.750.8426.748.527.121.15.1219.9
    10.02.721.750.7726.444.825.519.34.9719.4
    11.02.711.770.8028.145.225.220.04.5020.5
    12.22.711.780.7827.048.224.124.13.9220.7
    13.22.731.810.7530.450.124.225.94.0122.5
    15.02.731.750.8426.748.427.321.13.4223.8
    16.22.721.750.7726.444.325.518.83.1724.6
    18.22.711,780.7827.048.024.523.53.3224.5
    下载: 导出CSV

    表  2   广义邓肯-张模型参数

    Table  2   Parameters of generalized Duncan-Chang model

    深度/m模型参数
    c/kPaφ/(°)KnRf
    418.225.13.190.3560.913
    523.123.63.360.3470.909
    619.724.43.340.3820.918
    728.527.03.510.3740.871
    828.029.43.550.3920.882
    927.128.13.600.3990.832
    1026.531.83.540.3970.795
    1126.032.13.620.4090.813
    1225.033.83.600.3820.795
    1323.433.23.650.4180.773
    1422.933.63.700.3720.752
    1521.636.33.690.3710.785
    1620.938.13.720.3550.781
    1718.843.23.780.3750.752
    1818.141.93.820.3840.756
    下载: 导出CSV
  • [1]

    KONG L W, SAYEM H M, TIAN H. Influence of drying–wetting cycles on soil-water characteristic curve of undisturbed granite residual soils and microstructure mechanism by nuclear magnetic resonance (NMR) spin-spin relaxation time (T2) relaxometry[J]. Canadian Geotechnical Journal, 2018, 55(2): 208-216. doi: 10.1139/cgj-2016-0614

    [2] 杨光华. 广东深基坑支护工程的发展及新挑战[J]. 岩石力学与工程学报, 2012, 31(11): 2276-2284. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201211015.htm

    YAN Guang-hua. Development and new challenges of deep excavation supporting engineering in Guangdong province[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(11): 2276-2284. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201211015.htm

    [3]

    DA FONSECA A V, CARVALHO J, FERREIRA C, et al. Characterization of a profile of residual soil from granite combining geological, geophysical and mechanical testing techniques[J]. Geotechnical and Geological Engineering, 2006, 24(5): 1307-1348. doi: 10.1007/s10706-005-2023-z

    [4]

    DA FONSECA A V, SILVA S R, CRUZ N. Geotechnical characterization by in situ and lab tests to the back analysis of a supported excavation in Metro do Porto[J]. Geotechnical and Geological Engineering, 2010, 28(3): 251-264. doi: 10.1007/s10706-008-9183-6

    [5] 安然, 黎澄生, 孔令伟, 等. 花岗岩残积土原位力学特性的钻探扰动与卸荷滞时效应[J]. 岩土工程学报, 2020, 42(1): 109-116. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202001018.htm

    AN Ran, LI Cheng-sheng, KONG Ling-wei, et al. Effects of drilling disturbance and unloading lag on in-situ mechanical characteristics of granite residual soil[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 109-116. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202001018.htm

    [6] 温勇, 杨光华, 汤连生, 等. 广州地区花岗岩残积土力学特性试验及参数研究[J]. 岩土力学, 2016, 37(增刊2): 209-215. doi: 10.16285/j.rsm.2016.S2.025

    WEN Yong, YANG GUang-hua, TANG Lian-sheng, et al. Tests and parameters study of mechanical properties of granite residual soil in Guangzhou area[J]. Rock and Soil Mechanics, 2016, 37(S2): 209-215. (in Chinese) doi: 10.16285/j.rsm.2016.S2.025

    [7] 安然, 孔令伟, 黎澄生, 等. 确定残积土原位G-γ衰减曲线的建议方法与适宜性分析[J]. 岩土力学, 2018, 39(12): 4429-4436. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201812017.htm

    AN Ran, KONG Ling-wei, LI Cheng-sheng, et al. A proposed method to determine in-situ shear modulus and shear strain decay curves of granite residual soil and its suitability analysis[J]. Rock and Soil Mechanics, 2018, 39(12): 4429-4436. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201812017.htm

    [8] 郑敏洲, 简文彬, 吴茂明. 花岗岩残积土边坡稳定性可靠度分析[J]. 岩石力学与工程学报, 2005, 24(增刊2): 5337-5340. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2005S2010.htm

    ZHENG Min-zhou, JIAN Wen-bin, WU Mao-ming. Reliability analysis of stability of granite residual soil slope[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(S2): 5337-5340. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2005S2010.htm

    [9]

    BAI Wei, KONG Ling-wei, GUO Aiguo, et al. Stress- strain-electrical evolution properties and damage evolution equation of lateritic soil under uniaxial compression[J]. ASTM international Journal of Testing and Evaluation, 2017, 45(4): 1247-1260.

    [10] 沈珠江. 莫尔–库仑材料的屈服理论[J]. 水利水运科学研究, 1981(2): 1-9.

    SHEN Zhu-Jiang. A yield theory for Mohr-Cloumb material[J]. Hydro-Science and Engineering, 1981(2): 1-9. (in Chinese)

    [11]

    DRUCKER D C, PRAGER W. Soilmechanics and plastic analysis or limit design[J]. Quarterly of Applied Mathematics, 1952, 10: 157-165. doi: 10.1090/qam/48291

    [12]

    DUNCAN J M, CHANG C Y. Nonlinear analysis of sterss and starin in soils[J]. Journal of the Soil Mechanics and Foundations Division, 1970, 96(SM5): 1629-1653.

    [13]

    LIU M D, CARTER J P. A structured Cam clay model[J]. Canadian Geotechnical Journal, 2002, 39(1): 1313-1332.

    [14]

    YAO Y P, HOU W, ZHOU A N. UH model: three- dimensional unified hardening model for overconsolidated clays[J]. Géotechnique, 2009, 59(5): 451-469.

    [15] 黄文熙. 土的弹塑性应力–应变模型理论[J]. 岩土力学, 1979, 1(1): 1-20. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX197901001.htm

    HUANG Wen-xi. Theory of Elastoplastic stress-strain model of soil[J]. Rock and Soil Mechanics, 1979, 1(1): 1-20. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX197901001.htm

    [16] 沈珠江. 结构性粘土的弹塑性损伤模型[J]. 岩土工程学报, 1993, 15(3): 21-28. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC199303002.htm

    SHEN Zhu-jiang. An elasto-plastic demage model of cemented clay[J]. Chinese Journal of Geotechnical Engineering, 1993, 15(3): 21-28. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC199303002.htm

    [17] 殷德顺, 王保田, 王云涛. 不同应力路径下的邓肯–张模型模量公式[J]. 岩土工程学报, 2007, 29(9): 1380-1385. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200709017.htm

    YIN De-shun, WANG Bao-tian, WANG Yun-tao. Tangent elastic modulus of Duncan-Chang model for different stress paths[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(9): 1380-1385. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200709017.htm

    [18] 李广信. 用旁压试验求Duncan双曲线模型的参数[J]. 勘察科学技术, 1986(5): 25-29. https://www.cnki.com.cn/Article/CJFDTOTAL-KCKX198605006.htm

    LI Guang-xin. The parameters of Duncan hyperbolic model based on pressuremeter test[J]. Site Investigation Science and Technology, 1986(5): 25-29. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KCKX198605006.htm

    [19] 刘小生, 汪小刚, 马怀发, 等. 旁压试验反演邓肯–张模型参数方法研究[J]. 岩土工程学报, 2004, 26(5): 601-606. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200405004.htm

    LIU Xiao-sheng, WANG Xiao-gang, MA Huai-fa, et al. Study on back-analysis method of constitutive parameters for Duncan-Chang model based on in-situ pressuremeter tests[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(5): 601-606. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200405004.htm

    [20] 刘军定, 李荣建, 孙萍, 等. 基于结构性黄土联合强度的邓肯-张非线性本构模型[J]. 岩土工程学报, 2018, 40(增刊1): 124-128. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2018S1021.htm

    LIU Jun-ding, LI Rong-jian, SUN Ping, et al. Duncan-Chang nonlinear constitutive model based on joint strength theory of structural loess[J]. Chinese Jounal of Geotechnical Engineering, 2018, 40(S1): 124-128. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2018S1021.htm

    [21] 李晶晶, 孔令伟, 穆坤. 膨胀土原位孔内剪切试验与强度响应特征[J]. 岩土力学, 2017, 38(2): 453-461. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201702020.htm

    LI Jing-jing, KONG Ling-wei, MU Kun. In-situ borehole shear test on expansive soil and its strength characteristics[J]. Rock and Soil Mechanics, 2017, 38(2): 453-461. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201702020.htm

    [22]

    MILLER G A, KHOURY C N. Observations from Borehole Shear Testing in Unsaturated Soil[M]//Unsaturated Soils: Research and Applications. Napoli: Springer Berlin Heidelberg, 2012.

    [23]

    HANDY R L. Borehole shear test and slope stability[C]//Use of in Situ Tests in Geotechnical Engineering, ASCE, 2008, New York.

    [24]

    LUTENEGGER A J, HALLBERG G R. Borehole shear test in geotechnical investigations[J]. American Society for Testing and Materials, 1981: 566-578.

    [25]

    ZHANG X W, KONG L W, YIN S, et al. Engineering geology of basaltic residual soil in Leiqiong, southern China[J]. Engineering Geology, 2017, 220: 196-207.

    [26]

    RAHARDJO H, SATYANAGA A, LEONG E C, et al. Variability of residual soil properties[J]. Engineering Geology, 2012(141/142): 124-140.

    [27]

    ZHAI Q, RAHARDJO H, SATYANAGA A. Variability in unsaturated hydraulic properties of residual soil in Singapore[J]. Engineering Geology, 2016, 209: 21-29.

    [28]

    AN R, KONG L W, GUO A G, et al. A proposed method to determine in-situ shear modulus and shear strain decay curves in different structured soils[C]//7th International Symposium on Deformation Characteristics of Geomaterials, 2019, Glasgow.

    [29] 方谦, 洪汉烈, 赵璐璐, 等. 风化成土过程中自生矿物的气候指示意义[J]. 地球科学, 2018, 43(3): 753-769. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201803009.htm

    FANG Qian, HONG Han-lie, ZHAO Lu-lu, et al. Climatic Implicaiton of authigenic minerals formed during pedogenic weathering process[J]. Earth Science, 2018, 43(3): 753-769. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201803009.htm

    [30]

    CERYAN S, ZORLU K, GOKCEOGLU C, et al. The use of cation packing index for characterizing the weathering degree of granitic rocks[J]. Engineering Geology, 2008, 98(1/2): 60-74.

    [31] 吴蓓娟, 彭渤, 张坤, 等. 黑色页岩化学风化程度指标研究[J]. 地质学报, 2016, 90(4): 818-832. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201604016.htm

    WU Bei-juan, ZHOU Shang-zhe, ZHANG Kun. A new chemical index of identifying the weathering degree of black shale[J]. Acta Geologica Sinica, 2016, 90(4): 818-832. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201604016.htm

    [32] 朱思军, 杨光华, 陈富强, 张玉成. 十字板剪切试验在珠三角深厚软土基坑工程中的应用[J]. 广东水利水电, 2016(6): 28-33. https://www.cnki.com.cn/Article/CJFDTOTAL-GDSD201606008.htm

    ZHU Si-jun, YANG Guang-hua, CHEN Fu-qiang, et al. Application of the vane shear test in excavation engineering in deep and soft soil in the pearl river delta[J]. Guangdong Water Resources and Hydropower, 2016(6): 28-33. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GDSD201606008.htm

    [33] 王立忠, 赵志远, 李玲玲. 考虑土体结构性的修正邓肯—张模型[J]. 水利学报, 2004, 35(1): 83-89. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200401016.htm

    WANG Li-zhong, ZHAO Zhi-yuan, LI Ling-ling. Non-linear elastic model considering soil structural damage[J]. Journal of Hydraulic Engineering, 2004, 35(1): 83-89. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200401016.htm

  • 期刊类型引用(1)

    1. 孙胜难,袁铸钢,刘钊,马洪浩. 基于随机森林回归算法的水泥立式磨磨内压差预测. 洛阳理工学院学报(自然科学版). 2024(02): 44-50 . 百度学术

    其他类型引用(6)

图(9)  /  表(2)
计量
  • 文章访问数:  296
  • HTML全文浏览量:  12
  • PDF下载量:  146
  • 被引次数: 7
出版历程
  • 收稿日期:  2019-12-26
  • 网络出版日期:  2022-12-07
  • 刊出日期:  2020-08-31

目录

    /

    返回文章
    返回