• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

缓冲/回填材料——膨润土颗粒及其混合物研究进展

刘樟荣, 崔玉军, 叶为民, 王琼, 张召, 陈永贵

刘樟荣, 崔玉军, 叶为民, 王琼, 张召, 陈永贵. 缓冲/回填材料——膨润土颗粒及其混合物研究进展[J]. 岩土工程学报, 2020, 42(8): 1401-1410. DOI: 10.11779/CJGE202008004
引用本文: 刘樟荣, 崔玉军, 叶为民, 王琼, 张召, 陈永贵. 缓冲/回填材料——膨润土颗粒及其混合物研究进展[J]. 岩土工程学报, 2020, 42(8): 1401-1410. DOI: 10.11779/CJGE202008004
LIU Zhang-rong, CUI Yu-jun, YE Wei-min, WANG Qiong, ZHANG Zhao, CHEN Yong-gui. Advances in researches on buffer/backfilling materials—bentonite pellets and pellet mixtures[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(8): 1401-1410. DOI: 10.11779/CJGE202008004
Citation: LIU Zhang-rong, CUI Yu-jun, YE Wei-min, WANG Qiong, ZHANG Zhao, CHEN Yong-gui. Advances in researches on buffer/backfilling materials—bentonite pellets and pellet mixtures[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(8): 1401-1410. DOI: 10.11779/CJGE202008004

缓冲/回填材料——膨润土颗粒及其混合物研究进展  English Version

基金项目: 

国家重大科研仪器研制项目 41527801

国家自然科学基金项目 41672271

国家自然科学基金项目 41807237

上海市浦江人才计划项目 18PJ1410200

详细信息
    作者简介:

    刘樟荣(1990—),男,江西赣州人,博士,博士后,主要从事非饱和土力学与工程地质方面的研究工作。E-mail:liuzr@tongji.edu.cn

    通讯作者:

    叶为民, E-mail:ye_tju@tongji.edu.cn

  • 中图分类号: TU41

Advances in researches on buffer/backfilling materials—bentonite pellets and pellet mixtures

  • 摘要: 膨润土颗粒是一种用于填充高放废物地质处置库中各种施工接缝和空隙的缓冲/回填材料。从膨润土颗粒的制备方法、填充技术与堆积性质、热传导特性、水力特性、结构演化规律及力学特性等6个方面,全面回顾和总结了近年来对膨润土颗粒的研究成果与最新进展,并分别指出了各方面值得进一步深入研究的几个课题。研究表明,膨润土颗粒可由多种方法制备,也可采用多种技术填充到处置库中,其堆积干密度和均匀性与充填技术、级配、堆积方式等因素有关,其热传导系数与干密度、含水率和温度等因素有关,其水力–力学特性与级配、干密度及温度等因素有关。通水水化或降低吸力过程中,颗粒混合物由初始松散结构逐渐转变为胶结融合结构,及至水化饱和后基本达到宏观上的均一化结构,但微观层次的均一化过程仍将持续漫长的时间。考虑到处置库实际运营工况的复杂性,科学高效的颗粒混合物填充技术、多场(热–水–化–力)耦合条件下的颗粒混合物水力–力学特性及结构演化规律是今后值得深入探索的研究方向。
    Abstract: The bentonite pellet is considered as an alternative buffer/backfilling material to fill technological voids and empty space in high-level radioactive waste (HLW) repository. The previous studies on the bentonite pellets are carefully reviewed and summarized, including their manufacturing methods, emplacement techniques, thermal conductivity, hydraulic behavior, structural change and mechanical behavior. Correspondingly, the research subjects worth further investigation are put forward. The results in the literatures indicate that the pellets can be manufactured and emplaced using several techniques, which together with size gradation and packing protocol can influence the packing dry density and homogeneity. For the pellet mixtures, the thermal conductivity is mainly governed by dry density, water content and temperature, and the hydro-mechanical behavior is related to size gradation, dry density and temperature. Upon liquid or suction controlled hydration, the initial loose-structured pellet mixtures will gradually transfer to the cemented state and finally present a homogeneous appearance at saturation. However, much longer duration is required before getting a completely homogeneous state. Considering the complexity of the operation conditions in a HLW repository, the improvements on emplacement techniques of the pellets and the investigations on the hydro-mechanical behavior and structural change under the coupled thermo-hydro-chemo-mechanical conditions should be further conducted.
  • 图  1   膨润土颗粒在高放废物处置库中的应用

    Figure  1.   The application of bentonite pellets in HLW repository

    图  2   挤压法及其制备的颗粒[7-8]

    Figure  2.   Extrusion method and produced pellets[7-8]

    图  3   辊压法及其制备的颗粒[7,11]

    Figure  3.   Roller compaction method and produced pellets[7,11]

    图  4   压实法与压实–破碎法制备的颗粒[12-13]

    Figure  4.   Pellets manufactured by compaction and compaction-crushing methods[12-13]

    图  5   带式输送法、螺旋输送法和气动喷射法示意图

    Figure  5.   Schematic diagrams of pellets emplaced by belt, auger and pneumatic conveying

    图  6   矩形槽和环形槽填充试验[26-27]

    Figure  6.   Pellet filling tests in rectangle and annular gaps[26-27]

    图  7   颗粒混合物的热传导系数测试技术[8,28]

    Figure  7.   Measuring techniques of thermal conductivity for pellet mixtures[8,28]

    图  8   热传导系数随干密度的变化[11,25]

    Figure  8.   Evolution of thermal conductivity with dry density[11,25]

    图  9   不同干密度FEBEX膨润土颗粒混合物的持水曲线[10]

    Figure  9.   Curves of water retention of FEBEX bentonite pellets with different dry densities[10]

    图  10   FEBEX膨润土颗粒混合物渗透系数随时间的演化[10]

    Figure  10.   Evolution of hydraulic conductivity with time for FEBEX bentonite pellets[10]

    图  11   不同吸力下单个颗粒的结构特征[31]

    Figure  11.   Structural characteristics of single pellet at different suctions[31]

    图  12   水化过程中颗粒混合物的结构演化[39-40]

    Figure  12.   Structural evolution of pellet mixtures during hydration[39-40]

    图  13   颗粒强度和耐磨性试验设备[8]

    Figure  13.   Devices used in pellet strength and abrasion tests[8]

    图  14   不同条件下颗粒混合物的膨胀力时程曲线[9,42]

    Figure  14.   Evolution of swelling pressure with time for pellet mixtures under different conditions[9,42]

    图  15   膨胀变形与竖向荷载及吸力的关系[10]

    Figure  15.   Evolution of swelling strain with vertical stress and suction[10]

    图  16   弹、塑性压缩系数随吸力的变化[10]

    Figure  16.   Evolution of elastoplastic compressibility coefficients (κ and λ) with suction[10]

    表  1   膨润土颗粒的制备方法比较

    Table  1   Overview of manufacture techniques for bentonite pellets

    方法原理颗粒性质优点缺点
    挤压法机械压实形状规则大小统一工序简单,效率高,机械化程度高需要特定的制样模具,粒径范围有限
    辊压法
    压实法
    压实–破碎法机械压实机械破碎形状各异大小不一可制备各种粒径的颗粒工序多,效率低,难以控制机械破碎的初始粒径
    湿–干–破碎法吸力固结机械破碎
    下载: 导出CSV

    表  2   膨润土颗粒的填充方法比较

    Table  2   Overview of filling techniques for bentonite pellets

    方法主要优点主要缺点适用性
    带式输送效率高粉尘多
    易离析
    设备笨重
    填充较大的空隙或回填巷道
    螺旋输送效率较高
    粉尘较少
    均匀性较好
    设备较笨重填充较大的接缝、空隙或回填巷道
    气动喷射效率较高
    堆积密度大
    粉尘多
    均匀性差
    可填充各种接缝、空隙或回填巷道
    人工填充适应性强粉尘多
    效率低
    可填充各种接缝、空隙或回填巷道
    下载: 导出CSV
  • [1] 崔玉军, 陈宝. 高放核废物地质处置中工程屏障研究新进展[J]. 岩石力学与工程学报, 2006, 25(4): 842-847. doi: 10.3321/j.issn:1000-6915.2006.04.019

    CUI Yu-jun, CHEN Bao. Recent advances in research on engineered barrier for geological disposal of high-level radioactive nuclear waste[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(4): 842-847. (in Chinese) doi: 10.3321/j.issn:1000-6915.2006.04.019

    [2] 陈永贵, 贾灵艳, 叶为民, 等. 施工接缝对缓冲材料水–力特性影响研究进展[J]. 岩土工程学报, 2017, 39(1): 138-147. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201701014.htm

    CHEN Yong-gui, JIA Ling-yan, YE Wei-min, et al. Advances in hydro-mechanical behaviors of buffer materials under effect of technological gaps[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1): 138-147. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201701014.htm

    [3]

    WANG Q, TANG A M, CUI Y J, et al. The effects of technological voids on the hydro-mechanical behaviour of compacted bentonite–sand mixture[J]. Soils and Foundations, 2013, 53(2): 232-245. doi: 10.1016/j.sandf.2013.02.004

    [4]

    SALO J-P, KUKKOLA T. Bentonite Pellets, an Alternative Buffer Material for Spent Fuel Canister Deposition Holes[R]. Paris: NEA/CEC Workshop “Sealing of Radioactive Waste Repositories” (Braunschweig, Germany), OECD, 1989.

    [5]

    DIXON D, SANDÉN T, JONSSON E, et al. Backfilling of Deposition Tunnels: Use of Bentonite Pellets[R]. Stockholm: Svensk Kärnbränslehantering AB, SKB P-11-44, 2011.

    [6] 刘樟荣. 高庙子膨润土颗粒混合物的堆积性质与考虑温度影响的水力特性研究[D]. 上海: 同济大学, 2019.

    LIU Zhang-rong. Investigation on the Packing Behaviour and Thermal-Hydraulic Properties of GMZ Bentonite Pellet Mixtures[D]. Shanghai: Tongji University, 2019. (in Chinese)

    [7]

    ANDERSSON L, SANDÉN T. Optimization of Backfill Pellet Properties, ÅSKAR DP2, Laboratory Tests[R]. Stockholm: Svensk Kärnbränslehantering AB, SKB R-12-18, 2012.

    [8]

    MARJAVAARA P, HOLT E, SJÖBLOM V. Customized Bentonite Pellets: Manufacturing, Performance and Gap Filling Properties[R]. Eurajoki: Posiva OY, 2013.

    [9]

    IMBERT C, VILLAR M V. Hydro-mechanical response of a bentonite pellets/powder mixture upon infiltration[J]. Applied Clay Science, 2006, 32(3/4): 197-209.

    [10]

    HOFFMANN C, ALONSO E E, ROMERO E. Hydro- mechanical behaviour of bentonite pellet mixtures[J]. Physics and Chemistry of the Earth, 2007, 32(8/9/10/11/12/13/14): 832-849.

    [11]

    KIM C S, MAN A, DIXON D, et al. Clay-Based Pellets for Use in Tunnel Backfill and as Gap Fill in a Deep Geological Repository: Characterisation of Thermal-mechanical Properties[R]. Toronto: Nuclear Waste Management Organisation, 2012.

    [12]

    MOLINERO-GUERRA A, MOKNI N, DELAGE P, et al. In-depth characterisation of a mixture composed of powder/pellets MX80 bentonite[J]. Applied Clay Science, 2017, 135: 538-546. doi: 10.1016/j.clay.2016.10.030

    [13]

    CHEN L, LIU Y M, WANG J, et al. Investigation of the thermal-hydro-mechanical (THM) behavior of GMZ bentonite in the China-Mock-up test[J]. Engineering Geology, 2014, 172: 57-68. doi: 10.1016/j.enggeo.2014.01.008

    [14] 张虎元, 王学文, 刘平, 等. 缓冲回填材料砌块接缝密封及愈合研究[J]. 岩石力学与工程学报, 2016, 35(增刊2): 3605-3614. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2016S2019.htm

    ZHANG Hu-yuan, WANG Xue-wen, LIU Ping, et al. Sealing and healing of compacted bentonite block joints in HLW disposal[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(S2): 3605-3614. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2016S2019.htm

    [15] 陈香波. 颗粒膨润土堆积性质及压实性质研究[D]. 兰州: 兰州大学, 2018.

    CHEN Xiang-bo. Packing and Static Compaction of Pellet Bentonite for HLW Disposal[D]. Lanzhou: Lanzhou University, 2018. (in Chinese)

    [16]

    ZHANG Z, YE W M, LIU Z R, et al. Influences of PSD curve and vibration on the packing dry density of crushed bentonite pellet mixtures[J]. Construction and Building Materials, 2018, 185: 246-255. doi: 10.1016/j.conbuildmat.2018.07.096

    [17]

    LIU Z R, YE W M, ZHANG Z, et al. Particle size ratio and distribution effects on packing behaviour of crushed GMZ bentonite pellets[J]. Powder Technology, 2019, 351: 92-101. doi: 10.1016/j.powtec.2019.03.038

    [18]

    LIU Z R, YE W M, ZHANG Z, et al. A nonlinear particle packing model for multi-sized granular soils[J]. Construction and Building Materials, 2019, 221: 274-282. doi: 10.1016/j.conbuildmat.2019.06.075

    [19]

    LIU Z R, YE W M, CUI Y J, et al. Investigation on vibration-induced segregation behaviour of crushed GMZ bentonite pellet mixtures[J]. Construction and Building Materials, 2020, 241: 117949. doi: 10.1016/j.conbuildmat.2019.117949

    [20] 谈云志, 李辉, 彭帆, 等. 膨润土团粒的压实性能研究[J]. 防灾减灾工程学报, 2018, 38(5): 773-780. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201805001.htm

    TANG Yun-zhi, LI Hui, PENG Fan, et al. Compaction properties of bentonite agglomerate[J]. Journal of Disaster Prevention and Mitigation Engineering, 2018, 38(5): 773-780. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201805001.htm

    [21]

    FERRARI A, SEIPHOORI A, RÜEDI J, et al. Shot-clay MX-80 bentonite: An assessment of the hydro-mechanical behaviour[J]. Engineering Geology, 2014, 173: 10-18. doi: 10.1016/j.enggeo.2014.01.009

    [22]

    KÖHLER S, MAYOR J C, NUSSBAUM C, et al. Report of the Construction of the HE-E Experiment[R]. PEBS Report, 2012.

    [23]

    KÖHLER S, MAYOR J C, NUSSBAUM C, et al. Report of the construction of the HE-E experiment[R]. PEBS Report, 2012.

    [24]

    GARCÍA-SIÑERIZ J L, VILLAR M V, REY M, et al. Engineered barrier of bentonite pellets and compacted blocks: State after reaching saturation[J]. Engineering Geology, 2015, 192: 33-45. doi: 10.1016/j.enggeo.2015.04.002

    [25]

    MASUDA R, ASANO H, TOGURI S, et al. Buffer construction technique using granular bentonite[J]. Journal of nuclear science and technology, 2007, 44(3): 448-455. doi: 10.1080/18811248.2007.9711307

    [26]

    MARJAVAARA P, KIVIKOSKI H. Filling the gap between buffer and rock in the deposition hole[R]. Eurajoki: Posiva OY, 2011.

    [27]

    ÅBERG A. Effects of Water Inflow on the Buffer: An Experimental Study[R]. Stockholm: Svensk Kärnbränslehantering AB, SKB Rapport R-09-29, 2009.

    [28]

    KIVIKOSKI H, HEIMONEN I, HYTTINEN H. Bentonite Pellet Thermal Conductivity Techniques and Measurements[R]. Eurajoki: Posiva OY, 2015.

    [29] 马国梁. 膨润土颗粒材料的工程性能研究[D]. 兰州: 兰州大学, 2018.

    MA Guo-liang. Engineering Properties of Granular Bentonite Materials for HLW Disposal[D]. Lanzhou: Lanzhou University, 2018. (in Chinese)

    [30]

    WIECZOREK K, MIEHE R, GARITTE B. Thermal Characterisation of HE-E Buffer[R]. PEBS Report, DELIVERABLE (D-N°: 2.2-9), 2013.

    [31]

    MOLINERO-GUERRA A. Experimental and Numerical Characterizations of the Hydro-Mechanical Behavior of a Heterogeneous Material: Pellet/Powder Bentonite Mixture[D]. Paris: University of Paris-Est, 2018.

    [32]

    MOLINERO-GUERRA A, CUI Y J, HE Y, et al. Characterization of water retention, compressibility and swelling properties of a pellet/powder bentonite mixture[J]. Engineering Geology, 2019, 248: 14-21. doi: 10.1016/j.enggeo.2018.11.005

    [33]

    MOLINERO-GUERRA A, DELAGE P, CUI Y J, et al. Water-retention properties and microstructure changes of a bentonite pellet upon wetting/drying; application to radioactive waste disposal[J]. Géotechnique, 2020, 70(3): 199-209. doi: 10.1680/jgeot.17.P.291

    [34]

    VILLAR M V, MARTÍN P L, ROMERO F J. Long-term THM Tests Reports: THM Cells for the HE-E Test: Update of Results Until February 2014[R]. Madrid: CIEMAT, 2014.

    [35]

    KARNLAND O, NILSSON U, WEBER H, et al. Sealing ability of wyoming bentonite pellets foreseen as buffer material-Laboratory results[J]. Physics and Chemistry of the Earth, 2008, 33: S472-S475. doi: 10.1016/j.pce.2008.10.024

    [36]

    MOLINERO GUERRA A, CUI Y J, MOKNI N, et al. Investigation of the hydro-mechanical behaviour of a pellet/powder MX80 bentonite mixture using an infiltration column[J]. Engineering Geology, 2018, 243: 18-25. doi: 10.1016/j.enggeo.2018.06.006

    [37] 苏振妍. 颗粒膨润土材料持水性能及渗透性能研究[D]. 兰州: 兰州大学, 2019.

    SU Zhen-yan. The Water Retention and Permeability of Granular Bentonite Material for HLW Disposal[D]. Lanzhou: Lanzhou University, 2019. (in Chinese)

    [38]

    DIXON D, LUNDIN C, ÖRTENDAHL E, et al. Deep Repository–Engineered Barrier Systems: Half Scale Tests to Examine Water Uptake by Bentonite Pellets in a Block-Pellet Backfill System[R]. Stockholm: Svensk Kärnbränslehantering AB, 2008.

    [39]

    VAN GEET M, VOLCKAERT G, ROELS S. The use of microfocus X-ray computed tomography in characterising the hydration of a clay pellet/powder mixture[J]. Applied Clay Science, 2005, 29(2): 73-87. doi: 10.1016/j.clay.2004.12.007

    [40]

    MOLINERO-GUERRA A, AIMEDIEU P, BORNERT M, et al. Analysis of the structural changes of a pellet/powder bentonite mixture upon wetting by X-ray computed microtomography[J]. Applied Clay Science, 2018, 165: 164-169. doi: 10.1016/j.clay.2018.07.043

    [41] 叶为民, 刘樟荣, 崔玉军, 等. 膨润土膨胀力时程曲线的形态特征及其模拟[J]. 岩土工程学报, 2020, 42(1): 29-36. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202001006.htm

    YE Wei-min, LIU Zhang-rong, CUI Yu-jun, et al. Features and modelling of time-evolution curves of swelling pressure of bentonite[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 29-36. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202001006.htm

    [42]

    VILLAR M V. EB experiment Laboratory infiltration tests report[R]. Madrid: CIEMAT, 2012.

    [43]

    ZHANG Z, YE W M, LIU Z R, et al. Mechanical behavior of GMZ bentonite pellet mixtures over a wide suction range[J]. Engineering Geology, 2020, 264: 105383. doi: 10.1016/j.enggeo.2019.105383

    [44]

    PUSCH R, BLUEMLING P, JOHNSON L. Performance of strongly compressed MX-80 pellets under repository-like conditions[J]. Applied Clay Science, 2003, 23: 239-244. doi: 10.1016/S0169-1317(03)00108-X

    [45]

    ALONSO E E, ROMERO E, HOFFMANN C. Hydromechanical behaviour of compacted granular expansive mixtures: experimental and constitutive study[J]. Géotechnique, 2011, 61(4): 329-344. doi: 10.1680/geot.2011.61.4.329

    [46]

    ITO H. Compaction properties of granular bentonites[J]. Applied Clay Science, 2006, 31(1/2): 47-55.

    [47]

    GENS A, VALLEJÁN B, SÁNCHEZ M, et al. Hydromechanical behaviour of a heterogeneous compacted soil: experimental observations and modelling[J]. Géotechnique, 2011, 61(5): 367-386. doi: 10.1680/geot.SIP11.P.015

图(16)  /  表(2)
计量
  • 文章访问数:  488
  • HTML全文浏览量:  61
  • PDF下载量:  259
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-15
  • 网络出版日期:  2022-12-05
  • 刊出日期:  2020-07-31

目录

    /

    返回文章
    返回