• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

CFRP加固地铁车站结构中柱地震损伤评价研究

马超, 王作虎, 路德春, 杜修力

马超, 王作虎, 路德春, 杜修力. CFRP加固地铁车站结构中柱地震损伤评价研究[J]. 岩土工程学报, 2020, 42(12): 2249-2256. DOI: 10.11779/CJGE202012011
引用本文: 马超, 王作虎, 路德春, 杜修力. CFRP加固地铁车站结构中柱地震损伤评价研究[J]. 岩土工程学报, 2020, 42(12): 2249-2256. DOI: 10.11779/CJGE202012011
MA Chao, WANG Zuo-hu, LU De-chun, DU Xiu-li. Seismic damage evaluation of CFRP-strengthened columns in subway stations[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2249-2256. DOI: 10.11779/CJGE202012011
Citation: MA Chao, WANG Zuo-hu, LU De-chun, DU Xiu-li. Seismic damage evaluation of CFRP-strengthened columns in subway stations[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2249-2256. DOI: 10.11779/CJGE202012011

CFRP加固地铁车站结构中柱地震损伤评价研究  English Version

基金项目: 

国家自然科学基金项目 51208294

国家自然科学基金项目 51778026

北京市属高校活动经费项目 X18147

北京建筑大学金字塔人才培养工程 JDYC20200311

详细信息
    作者简介:

    马超(1986—),男,讲师,博士,主要从事岩土力学与城市地下结构防灾减灾等方面的教学与科研工作。E-mail:machao@bucea.edu.cn

    通讯作者:

    路德春, E-mail:dechun@bjut.edu.cn

  • 中图分类号: TU43

Seismic damage evaluation of CFRP-strengthened columns in subway stations

  • 摘要: FRP(纤维增强复合材料)能够在不显著改变钢筋混凝土柱侧向刚度的情况下,改善柱子的侧向变形能力,而地铁车站结构地震反应的强烈程度取决于土-结构相对刚度比,因此采用FRP加固地铁车站结构中柱,能够在不影响车站结构整体地震反应的情况下,减小地震引起的中柱损伤。开展了CFRP(碳纤维增强复合材料)加固混凝土柱的抗震性能试验,分析了CFRP对钢筋混凝土柱侧向刚度和变形能力的影响规律。采用试验结果验证了数值模型的合理性,并研究了不同轴压下CFRP加固柱的侧向变形能力。采用三维非线性时域显式整体分析方法,模拟获得了CFRP加固地铁车站结构的地震反应,分析了地震作用过程中结构中柱的变形行为。基于改进的Park-Ang模型,评价了加固柱与非加固柱的地震损伤程度。研究结果表明,在地震PGA介于0.3g~0.4g时,地铁车站结构下层加固柱在震后处于易修复或可修复状态,而非加固柱处于难修复或不可修复状态。
    Abstract: FRP, fiber reinforced plastics, can be used to improve the lateral deformation capacity of reinforced concrete columns without remarkably changing their lateral stiffness. The intensity of seismic response of subway stations depends on the relative stiffness between surrounding soils and structures. Therefore, when using the FRP-strengthed columns of subway stations, the damage of columns can be decreased, but the seismic response of overall structures will not be influenced. The experimental analysis is conducted to study the lateral stiffness and deformation capacity of reinforced concrete columns strengthened by CFRP, i.e., carbon fiber-reinforced plastics. The test results are used to verify the reasonability of numerical models, then the deformation properties of CFRP-strengthened columns under different axial forces are discussed using the verified models. The 3D nonlinear time-domain explicit integration algorithim is employed to simulate the seismic response of subway stations strengthened by CFPR, and the deformation behaviours of columns during earthquakes are analyzed. The earthquake-induced damages of non-strengthened and CFRP-strengthened columns are evaluated by the improved Park-Ang model. It is found that under the earthquakes with PGA of 0.3g~0.4g, the CFRP-strengthened columns in bottom storey are in the easily repairable or repairable states, but the non-strengthened columns are in the difficultly repairable or irreparable states.
  • 图  1   混凝土柱尺寸与配筋

    Figure  1.   Sketch of columns and rebars

    图  2   荷载条件及加载机制

    Figure  2.   Boundary and loading conditions

    图  3   试验与模拟获得的荷载-位移曲线

    Figure  3.   Comparison of load-deformation curves obtained from tests and simulations

    图  4   混凝土柱有限元模型

    Figure  4.   FEM model for concrete columns

    图  5   钢筋反复加载应力-应变曲线

    Figure  5.   Stress-strain curves of steel under cyclic loading

    图  6   车站结构详细尺寸与配筋

    Figure  6.   Sketch of subway station and rebars

    图  7   车站与土体有限元模型

    Figure  7.   FEM model for subway station and surrounding soils

    图  8   车站中柱荷载-位移曲线

    Figure  8.   Load-deformation curves of columns

    图  9   不同轴压下CFRP对柱变形能力的提高程度

    Figure  9.   Increase ratio of deformation property of columns under different axial stresses

    图  10   地震动加速度时程

    Figure  10.   Accelerations of applied ground motions

    图  11   中柱变形时程曲线(PGA=0.3g

    Figure  11.   Time histories of deformation of columns (PGA=0.3g)

    图  12   结构中柱等效塑性应变云图

    Figure  12.   Nephograms of equivalent plastic strain in columns

    图  13   结构中柱损伤因子

    Figure  13.   Damage factors of columns

    表  1   地层信息及相关参数

    Table  1   Description of strata and corresponding material parameters

    土层剖面岩土类别厚度/m重度/(kN·m-3)ϕ/(°)杨氏模量/MPa泊松比ν黏聚力/kPa
    ①填土117.0252160.3520
    ②粉质黏土11018.3301990.2820
    ③粉质黏土21417.4252760.3019
    ④粉质黏土3318.8323660.2520
    ⑤细砂619.0253850.3019
    ⑥碎石1621.0306730.3020
    下载: 导出CSV

    表  2   中柱在地震作用时的变形

    Table  2   Deformations of columns during earthquakes

    地震动幅值非加固CFRP加固
    上层柱下层柱上层柱下层柱
    δm/mmE/kJδm/mmE/kJδm/mmE/kJδm/mmE/kJ
    阪神0.2g6.400.7011.900.806.400.9011.900.70
    0.3g13.572.7825.605.0313.543.2125.306.26
    0.4g22.507.4047.3016.3022.607.7046.9017.50
    集集0.2g8.601.2415.511.588.581.0715.581.33
    0.3g15.163.7927.317.1814.914.0627.486.30
    0.4g19.588.2635.1612.7219.188.4835.2811.96
    熊本0.2g5.070.409.460.355.100.339.490.20
    0.3g8.631.0815.941.348.630.9216.041.34
    0.4g11.962.9822.416.1611.822.8322.586.15
    人工波0.2g5.090.288.960.265.030.348.900.35
    0.3g7.840.8114.071.177.810.9413.961.46
    0.4g10.161.8218.223.2710.121.8818.103.57
    汶川0.2g3.630.226.010.163.650.216.010.28
    0.3g6.290.6310.520.736.340.5210.180.66
    0.4g9.331.3514.631.829.371.0714.741.62
    下载: 导出CSV
  • [1]

    MA C, LU D C, DU X L, et al. Structural components functionalities and failure mechanism of rectangular underground structures during earthquakes[J]. Soil Dynamics and Earthquake Engineering, 2019, 119: 265-280. doi: 10.1016/j.soildyn.2019.01.017

    [2] 杜修力, 马超, 路德春, 等. 大开地铁车站地震破坏模拟与机理分析[J]. 土木工程学报, 2017, 50(1): 53-62. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201701007.htm

    DU Xiu-li, MA Chao, LU De-chun, et al. Collapse simulation and failure mechanism analysis of the Daikai station under seismic loads[J]. China Civil Engineering Journal, 2017, 50(1): 53-62. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201701007.htm

    [3]

    AN X H, SHAWKY A A, MAEKAWA K. The collapse mechanism of a subway station during the Great Hanshin Earthquake[J]. Cement and Concrete Composites, 1997, 19: 241-257. doi: 10.1016/S0958-9465(97)00014-0

    [4] 庄海洋, 程绍革, 陈国兴. 阪神地震中大开地铁车站震害机制数值仿真分析[J]. 岩土力学, 2008, 29(1): 245-250. doi: 10.3969/j.issn.1000-7598.2008.01.046

    ZHUANG Hai-yang, CHENG Shao-ge, CHEN Guo-xing. Numerical simulation and analysis of earthquake damages of Daikai metro station caused by Kobe earthquake[J]. Rock and Soil Mechanics, 2008, 29(1): 245-250. (in Chinese) doi: 10.3969/j.issn.1000-7598.2008.01.046

    [5] 杜修力, 李洋, 许成顺, 等. 1995年日本阪神地震大开地铁车站震害原因及成灾机理分析研究进展[J]. 岩土工程学报, 2018, 40(2): 223-236. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201802003.htm

    DU Xiu-li, LI Yang, XU Cheng-shun, et al. Review on damage causes and disaster mechanism of Daikai subway station during 1995 Osaka-Kobe Earthquake[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(2): 223-236. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201802003.htm

    [6] 地下结构抗震设计标准:GB/T 51336—2018[S]. 2019.

    Standard for Seismic Design of Underground Structures: GB/T 51336—2018[S]. 2019. (in Chinese)

    [7]

    MIKAMI A, KONAGAI K, SAWADA T. Stiffness design of isolation rubber for center columns of tunnel[J]. Doboku Gakkai Ronbunshu, 2001, 682: 415-420. (in Japanese)

    [8] 还毅, 方秦, 陈力, 等. 强震作用下地铁车站结构损伤破坏的三维非线性动力分析[J]. 北京工业大学学报, 2011, 37(6): 852-862. https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD201106008.htm

    HUAN Yi, FANG Qin, CHEN Li, et al. 3D Nonlinear damage analysis of metro-station structures under strong seismic loading[J]. Journal of Beijing University of Technology, 2011, 37(6): 852-862. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD201106008.htm

    [9]

    CHEN Zhi-yi, ZHOU Yu. Seismic performance of framed underground structures with self-centering energy-dissipation column base[J]. Advances in Structural Engineering, 2019, 22(13): 2809-2822. doi: 10.1177/1369433219852043

    [10]

    MA Chao, LU De-chun, DU Xiu-li. Seismic performance upgrading for underground structures by introducing sliding isolation bearings[J]. Tunnelling and Underground Space Technology, 2018, 74: 1-9. doi: 10.1016/j.tust.2018.01.007

    [11]

    XU Zi-gang, DU Xiu-li, XU Cheng-shun, et al. Numerical analyses of seismic performance of underground and aboveground structures with friction pendulum bearings[J]. Soil Dynamics and Earthquake Engineering, 2020, 130: 105967. doi: 10.1016/j.soildyn.2019.105967

    [12]

    LU De-chun, WU Chun-yu, MA Chao, et al. A novel segmental cored column for upgrading the seismic performance of underground frame structures[J]. Soil Dynamics and Earthquake Engineering, 2020, 131: 106011. doi: 10.1016/j.soildyn.2019.106011

    [13] 路德春, 李强, 杜修力, 等. 基于失效模式控制的地铁车站结构抗震性能研究[J]. 岩土工程学报, 2019, 38(8): 1400-1407. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201908004.htm

    LU De-chun, LI Qiang, DU Xiu-li, et al. Seismic performance of subway station based on failure model control[J]. Chinese Journal of Geotechnical Engineering, 2019, 38(8): 1400-1407. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201908004.htm

    [14]

    HOLLAWAY L C, TENG J G. Strengthening and Rehabilitation of Civil Infrastructures Using Fibre- Reinforced Polymer (FRP) Composites[M]. UK: Woodhead Publishing Ltd, 2008.

    [15] 禹海涛, 张正伟. 地下结构抗震设计和分析的反应剪力法[J]. 结构工程师, 2018, 34(2): 134-144. https://www.cnki.com.cn/Article/CJFDTOTAL-JGGC201802019.htm

    YU Hai-tao, ZHANG Zheng-wei. Response shear stress method for seismic design and analysis of underground structures[J]. Structural Engineers, 2018, 34(2): 134-144. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JGGC201802019.htm

    [16] 庄海洋, 任佳伟, 王瑞, 等. 两层三跨框架式地铁地下车站结构弹塑性工作状态与抗震性能水平研究[J]. 岩土工程学报, 2019, 41(1): 131-138. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201901018.htm

    ZHUANG Hai-yang, REN Jia-wei, WANG Rui, et al. Elasto-plastic working states and seismic performance levels of frame-type subway underground station with two layers and three spans[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 131-138. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201901018.htm

    [17] 董振华, 杜修力, 韩强. FRP加固钢筋混凝土墩柱抗震性能研究综述[J]. 建筑科学与工程学报, 2013, 30(2): 55-64. https://www.cnki.com.cn/Article/CJFDTOTAL-XBJG201302010.htm

    DONG Zhen-hua, DU Xiu-li, HAN Qiang. Review of research on seismic performance of RC columns strengthened with FRP[J]. Journal of Architecture and Civil Engineering, 2013, 30(2): 55-64. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XBJG201302010.htm

    [18] 混凝土结构设计规范:GB—50010 2010[S]. 2010.

    Code for Design of Concrete Structures: GB—50010 2010[S]. 2010. (in Chinese)

    [19]

    WILLIAMS M S, SEXSMITH R G. Seismic damage indices for concrete structures: a state-of-art review[J]. Earthquake Spectra, 1995, 11(3): 320-349.

    [20]

    HINDI R A, SEXSMITH R G. Inelastic damage analysis of reinforced concrete bridge columns based on degraded monotonic energy[J]. Journal of Bridge Engineering, 2004, 9(4): 326-332.

图(13)  /  表(2)
计量
  • 文章访问数:  309
  • HTML全文浏览量:  18
  • PDF下载量:  949
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-14
  • 网络出版日期:  2022-12-05
  • 刊出日期:  2020-11-30

目录

    /

    返回文章
    返回