Seismic damage evaluation of CFRP-strengthened columns in subway stations
-
摘要: FRP(纤维增强复合材料)能够在不显著改变钢筋混凝土柱侧向刚度的情况下,改善柱子的侧向变形能力,而地铁车站结构地震反应的强烈程度取决于土-结构相对刚度比,因此采用FRP加固地铁车站结构中柱,能够在不影响车站结构整体地震反应的情况下,减小地震引起的中柱损伤。开展了CFRP(碳纤维增强复合材料)加固混凝土柱的抗震性能试验,分析了CFRP对钢筋混凝土柱侧向刚度和变形能力的影响规律。采用试验结果验证了数值模型的合理性,并研究了不同轴压下CFRP加固柱的侧向变形能力。采用三维非线性时域显式整体分析方法,模拟获得了CFRP加固地铁车站结构的地震反应,分析了地震作用过程中结构中柱的变形行为。基于改进的Park-Ang模型,评价了加固柱与非加固柱的地震损伤程度。研究结果表明,在地震PGA介于0.3g~0.4g时,地铁车站结构下层加固柱在震后处于易修复或可修复状态,而非加固柱处于难修复或不可修复状态。Abstract: FRP, fiber reinforced plastics, can be used to improve the lateral deformation capacity of reinforced concrete columns without remarkably changing their lateral stiffness. The intensity of seismic response of subway stations depends on the relative stiffness between surrounding soils and structures. Therefore, when using the FRP-strengthed columns of subway stations, the damage of columns can be decreased, but the seismic response of overall structures will not be influenced. The experimental analysis is conducted to study the lateral stiffness and deformation capacity of reinforced concrete columns strengthened by CFRP, i.e., carbon fiber-reinforced plastics. The test results are used to verify the reasonability of numerical models, then the deformation properties of CFRP-strengthened columns under different axial forces are discussed using the verified models. The 3D nonlinear time-domain explicit integration algorithim is employed to simulate the seismic response of subway stations strengthened by CFPR, and the deformation behaviours of columns during earthquakes are analyzed. The earthquake-induced damages of non-strengthened and CFRP-strengthened columns are evaluated by the improved Park-Ang model. It is found that under the earthquakes with PGA of 0.3g~0.4g, the CFRP-strengthened columns in bottom storey are in the easily repairable or repairable states, but the non-strengthened columns are in the difficultly repairable or irreparable states.
-
Keywords:
- subway station /
- CFRP strengthening /
- seismic performance /
- seismic test /
- damage evaluation
-
-
表 1 地层信息及相关参数
Table 1 Description of strata and corresponding material parameters
土层剖面 岩土类别 厚度/m 重度/(kN·m-3) ϕ/(°) 杨氏模量/MPa 泊松比 黏聚力/kPa ①填土 1 17.0 25 216 0.35 20 ②粉质黏土1 10 18.3 30 199 0.28 20 ③粉质黏土2 14 17.4 25 276 0.30 19 ④粉质黏土3 3 18.8 32 366 0.25 20 ⑤细砂 6 19.0 25 385 0.30 19 ⑥碎石 16 21.0 30 673 0.30 20 表 2 中柱在地震作用时的变形
Table 2 Deformations of columns during earthquakes
地震动 幅值 非加固 CFRP加固 上层柱 下层柱 上层柱 下层柱 δm/mm E/kJ δm/mm E/kJ δm/mm E/kJ δm/mm E/kJ 阪神 0.2g 6.40 0.70 11.90 0.80 6.40 0.90 11.90 0.70 0.3g 13.57 2.78 25.60 5.03 13.54 3.21 25.30 6.26 0.4g 22.50 7.40 47.30 16.30 22.60 7.70 46.90 17.50 集集 0.2g 8.60 1.24 15.51 1.58 8.58 1.07 15.58 1.33 0.3g 15.16 3.79 27.31 7.18 14.91 4.06 27.48 6.30 0.4g 19.58 8.26 35.16 12.72 19.18 8.48 35.28 11.96 熊本 0.2g 5.07 0.40 9.46 0.35 5.10 0.33 9.49 0.20 0.3g 8.63 1.08 15.94 1.34 8.63 0.92 16.04 1.34 0.4g 11.96 2.98 22.41 6.16 11.82 2.83 22.58 6.15 人工波 0.2g 5.09 0.28 8.96 0.26 5.03 0.34 8.90 0.35 0.3g 7.84 0.81 14.07 1.17 7.81 0.94 13.96 1.46 0.4g 10.16 1.82 18.22 3.27 10.12 1.88 18.10 3.57 汶川 0.2g 3.63 0.22 6.01 0.16 3.65 0.21 6.01 0.28 0.3g 6.29 0.63 10.52 0.73 6.34 0.52 10.18 0.66 0.4g 9.33 1.35 14.63 1.82 9.37 1.07 14.74 1.62 -
[1] MA C, LU D C, DU X L, et al. Structural components functionalities and failure mechanism of rectangular underground structures during earthquakes[J]. Soil Dynamics and Earthquake Engineering, 2019, 119: 265-280. doi: 10.1016/j.soildyn.2019.01.017
[2] 杜修力, 马超, 路德春, 等. 大开地铁车站地震破坏模拟与机理分析[J]. 土木工程学报, 2017, 50(1): 53-62. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201701007.htm DU Xiu-li, MA Chao, LU De-chun, et al. Collapse simulation and failure mechanism analysis of the Daikai station under seismic loads[J]. China Civil Engineering Journal, 2017, 50(1): 53-62. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201701007.htm
[3] AN X H, SHAWKY A A, MAEKAWA K. The collapse mechanism of a subway station during the Great Hanshin Earthquake[J]. Cement and Concrete Composites, 1997, 19: 241-257. doi: 10.1016/S0958-9465(97)00014-0
[4] 庄海洋, 程绍革, 陈国兴. 阪神地震中大开地铁车站震害机制数值仿真分析[J]. 岩土力学, 2008, 29(1): 245-250. doi: 10.3969/j.issn.1000-7598.2008.01.046 ZHUANG Hai-yang, CHENG Shao-ge, CHEN Guo-xing. Numerical simulation and analysis of earthquake damages of Daikai metro station caused by Kobe earthquake[J]. Rock and Soil Mechanics, 2008, 29(1): 245-250. (in Chinese) doi: 10.3969/j.issn.1000-7598.2008.01.046
[5] 杜修力, 李洋, 许成顺, 等. 1995年日本阪神地震大开地铁车站震害原因及成灾机理分析研究进展[J]. 岩土工程学报, 2018, 40(2): 223-236. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201802003.htm DU Xiu-li, LI Yang, XU Cheng-shun, et al. Review on damage causes and disaster mechanism of Daikai subway station during 1995 Osaka-Kobe Earthquake[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(2): 223-236. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201802003.htm
[6] 地下结构抗震设计标准:GB/T 51336—2018[S]. 2019. Standard for Seismic Design of Underground Structures: GB/T 51336—2018[S]. 2019. (in Chinese)
[7] MIKAMI A, KONAGAI K, SAWADA T. Stiffness design of isolation rubber for center columns of tunnel[J]. Doboku Gakkai Ronbunshu, 2001, 682: 415-420. (in Japanese)
[8] 还毅, 方秦, 陈力, 等. 强震作用下地铁车站结构损伤破坏的三维非线性动力分析[J]. 北京工业大学学报, 2011, 37(6): 852-862. https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD201106008.htm HUAN Yi, FANG Qin, CHEN Li, et al. 3D Nonlinear damage analysis of metro-station structures under strong seismic loading[J]. Journal of Beijing University of Technology, 2011, 37(6): 852-862. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD201106008.htm
[9] CHEN Zhi-yi, ZHOU Yu. Seismic performance of framed underground structures with self-centering energy-dissipation column base[J]. Advances in Structural Engineering, 2019, 22(13): 2809-2822. doi: 10.1177/1369433219852043
[10] MA Chao, LU De-chun, DU Xiu-li. Seismic performance upgrading for underground structures by introducing sliding isolation bearings[J]. Tunnelling and Underground Space Technology, 2018, 74: 1-9. doi: 10.1016/j.tust.2018.01.007
[11] XU Zi-gang, DU Xiu-li, XU Cheng-shun, et al. Numerical analyses of seismic performance of underground and aboveground structures with friction pendulum bearings[J]. Soil Dynamics and Earthquake Engineering, 2020, 130: 105967. doi: 10.1016/j.soildyn.2019.105967
[12] LU De-chun, WU Chun-yu, MA Chao, et al. A novel segmental cored column for upgrading the seismic performance of underground frame structures[J]. Soil Dynamics and Earthquake Engineering, 2020, 131: 106011. doi: 10.1016/j.soildyn.2019.106011
[13] 路德春, 李强, 杜修力, 等. 基于失效模式控制的地铁车站结构抗震性能研究[J]. 岩土工程学报, 2019, 38(8): 1400-1407. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201908004.htm LU De-chun, LI Qiang, DU Xiu-li, et al. Seismic performance of subway station based on failure model control[J]. Chinese Journal of Geotechnical Engineering, 2019, 38(8): 1400-1407. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201908004.htm
[14] HOLLAWAY L C, TENG J G. Strengthening and Rehabilitation of Civil Infrastructures Using Fibre- Reinforced Polymer (FRP) Composites[M]. UK: Woodhead Publishing Ltd, 2008.
[15] 禹海涛, 张正伟. 地下结构抗震设计和分析的反应剪力法[J]. 结构工程师, 2018, 34(2): 134-144. https://www.cnki.com.cn/Article/CJFDTOTAL-JGGC201802019.htm YU Hai-tao, ZHANG Zheng-wei. Response shear stress method for seismic design and analysis of underground structures[J]. Structural Engineers, 2018, 34(2): 134-144. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JGGC201802019.htm
[16] 庄海洋, 任佳伟, 王瑞, 等. 两层三跨框架式地铁地下车站结构弹塑性工作状态与抗震性能水平研究[J]. 岩土工程学报, 2019, 41(1): 131-138. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201901018.htm ZHUANG Hai-yang, REN Jia-wei, WANG Rui, et al. Elasto-plastic working states and seismic performance levels of frame-type subway underground station with two layers and three spans[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 131-138. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201901018.htm
[17] 董振华, 杜修力, 韩强. FRP加固钢筋混凝土墩柱抗震性能研究综述[J]. 建筑科学与工程学报, 2013, 30(2): 55-64. https://www.cnki.com.cn/Article/CJFDTOTAL-XBJG201302010.htm DONG Zhen-hua, DU Xiu-li, HAN Qiang. Review of research on seismic performance of RC columns strengthened with FRP[J]. Journal of Architecture and Civil Engineering, 2013, 30(2): 55-64. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XBJG201302010.htm
[18] 混凝土结构设计规范:GB—50010 2010[S]. 2010. Code for Design of Concrete Structures: GB—50010 2010[S]. 2010. (in Chinese)
[19] WILLIAMS M S, SEXSMITH R G. Seismic damage indices for concrete structures: a state-of-art review[J]. Earthquake Spectra, 1995, 11(3): 320-349.
[20] HINDI R A, SEXSMITH R G. Inelastic damage analysis of reinforced concrete bridge columns based on degraded monotonic energy[J]. Journal of Bridge Engineering, 2004, 9(4): 326-332.