• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

新型拉压复合型锚杆锚固性能研究Ⅲ:现场试验

涂兵雄, 蔡燕燕, 何锦芳, 俞缙, 许国平, 程强

涂兵雄, 蔡燕燕, 何锦芳, 俞缙, 许国平, 程强. 新型拉压复合型锚杆锚固性能研究Ⅲ:现场试验[J]. 岩土工程学报, 2019, 41(5): 846-854. DOI: 10.11779/CJGE201905007
引用本文: 涂兵雄, 蔡燕燕, 何锦芳, 俞缙, 许国平, 程强. 新型拉压复合型锚杆锚固性能研究Ⅲ:现场试验[J]. 岩土工程学报, 2019, 41(5): 846-854. DOI: 10.11779/CJGE201905007
TU Bing-xiong, CAI Yan-yan, HE Jin-fang, YU Jin, XU Guo-ping, CHENG Qiang. Analysis of anchorage performance on new tension-compression anchor Ⅲ field test[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(5): 846-854. DOI: 10.11779/CJGE201905007
Citation: TU Bing-xiong, CAI Yan-yan, HE Jin-fang, YU Jin, XU Guo-ping, CHENG Qiang. Analysis of anchorage performance on new tension-compression anchor Ⅲ field test[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(5): 846-854. DOI: 10.11779/CJGE201905007

新型拉压复合型锚杆锚固性能研究Ⅲ:现场试验  English Version

基金项目: 国家自然科学基金项目(51408242,51678112,51774147); 中国博士后科学基金项目(2016M592082)
详细信息
    作者简介:

    涂兵雄(1984— ),男,硕士生导师,主要从事基坑工程及边坡工程方面的教学与科研工作。E-mail:tubingxiong@163.com。

  • 中图分类号: TU455

Analysis of anchorage performance on new tension-compression anchor Ⅲ field test

  • 摘要: 针对传统拉力型锚杆存在受力集中、锚固体与岩土体界面黏结强度发挥不充分、抗拔承载力偏低的问题,研发了一种新型拉压复合型锚杆。通过开展现场破坏性试验,对拉力型锚杆及拉压复合型锚杆的承载能力、荷载位移曲线及应变数据进行分析,结果表明:3组拉压复合型锚杆TC12-3、TC11-1、TC21锚杆的平均破坏荷载分别提高至拉力型锚杆的2.81,2.01,2.52倍;拉压复合型锚杆套管内的拉力传递损失率最大为20.5%,在自由段内的拉力传递损失率最大仅为6.8%,拉力传递损失主要发生在承压锚固段上;TC12-3锚杆的受拉锚固段长度最短,单位受拉锚固段长度分担荷载最高;TC21-1锚杆的承压锚固段最短,单位承压锚固段长度分担荷载最高;锚杆破坏时,TC12-3、TC11-1、TC21-1锚杆的受拉承载系数分别为0.398,0.470,0.600;且TC11-1锚杆表现为承压锚固段与受拉锚固段同时破坏,TC12-3、TC21-1锚杆表现为先后破坏;拉压复合型锚杆锚固性能显著提高主要是由于荷载分解作用,界面剪应力双向传递机制及短锚承载效应;从荷载位移曲线来看,拉压复合型锚杆具有较好的抗变形能力,在岩土锚固工程中,具有显著的优势和广阔的应用前景。
    Abstract: The new tension-compression composite anchor (TC-anchor) is developed to overcome the shortcomings of the traditional tension anchor (T-anchor), such as stress concentration, insufficient bonding strength between anchorage body and soil mass, and low uplift bearing capacity. The bearing capacity, load-displacement curves and strain data of T-anchor and TC-anchor are analyzed, based on the field destructive tests. The results show that the average destructive loads of three groups of TC-anchor, TC12 -3, TC11-1 and TC21, increase to 2.81, 2.01, 2.52 times those of T-anchor, respectively. The maximum tension loss rate in the rebar hole is 20.5% and only 6.8% along the free anchorage length, and therefore the tension loss occurs mainly along the compression anchorage body (CAB). The tension anchorage body (TAB) length of TC12-3 anchor is the shortest, and therefore the bearing loads of unit TAB length are the highest. The CAB length of TC21-1 anchor is the shortest, and therefore the bearing loads of unit CAB length are the highest. When the anchor is destructed, the tension bearing coefficients of TC12-3, TC11-1, TC21-1 are 0.398, 0.470, 0.600, respectively, and the CAB and TAB of TC11-1 are destructed at the same time, while those of TC12-3 and TC21-1 are destructed successively. The significantly increased anchorage performance of TC-anchor is mainly due to the decomposition of the loads, the two-way transmission mechanisms of the interface shear stress and the bearing effect of short anchor. It can be seen from the load-displacement curves that the TC-anchor has better deformation-resisting capability. Therefore, it has significant advantages and broad application prospects in geotechnical anchorage engineering.
  • [1] 程良奎, 范景伦, 韩军, 等. 岩土锚固[M]. 北京: 中国建筑工业出版社, 2000: 35-45.
    (CHENG Liang-kui, FAN Jing-lun, HAN Jun, et al.Ground anchrage[M]. Beijing: China Architecture and Building Press, 2000: 35-45. (in Chinese))
    [2] 张季如, 唐保付. 锚杆荷载传递机理分析的双曲函数模型[J]. 岩土工程学报, 2002, 23(2): 188-192.
    (ZHANG Ji-ru, TANG Bao-fu.Hyperbolic function model to analyze load transfer mechanism on bolts[J]. Chinese Journal of Geotechnical Engineering, 2002, 23(2): 188-192. (in Chinese))
    [3] 何思明, 田金昌, 周建庭. 胶结式预应力锚索锚固段荷载传递特性研究[J]. 岩石力学与工程学报, 2006, 25(1): 117-121.
    (HE Si-ming, TIAN Jin-chang, ZHOU Jian-ting.Study on load transfer of bond prestressed anchor rope[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(1): 117-121. (in Chinese))
    [4] 胡建林, 张培文. 扩体型锚杆的研制及其抗拔试验研究[J]. 岩土力学, 2009, 30(6): 1615-1619.
    (HU Jian-lin, ZHANG Pei-wen.Development of underreamed anchor and experimental study of uplift resistance[J]. Rock and Soil Mechanics, 2009, 30(6): 1615-1619. (in Chinese))
    [5] 郭钢, 刘钟, 邓益兵, 等. 砂土中扩体锚杆承载特性模型试验研究[J]. 岩土力学, 2012, 33(12): 3645-3652.
    (GUO Gang, LIU Zhong, DENG Yi-bing, et al.Model test research on bearing capacity characteristics of underreamed ground anchor in sand[J]. Rock and Soil Mechanics, 2012, 33(12): 3645-3652. (in Chinese))
    [6] 郭钢, 刘钟, 李永康, 等. 扩体锚杆拉拔破坏机制模型试验研究[J]. 岩石力学与工程学报, 2013, 32(8): 1677-1684.
    (GUO Gang, LIU Zhong, LI Yong-kang, et al.Model test research on failure mechanism of underreamed ground anchor[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(8):1677-1684. (in Chinese))
    [7] 曹佳文, 彭振斌, 彭文祥, 等. 充气锚杆在砂土中的模型试验研究[J]. 岩土力学, 2011, 32(7): 1957-1962.
    (CAO Jia-wen, PENG Zhen-bin, PENG Wen-xiang, et al.Model test study of inflated anchors in sands[J]. Rock and Soil Mechanics, 2011, 32(7): 1957-1962. (in Chinese))
    [8] 彭文祥, 张旭, 曹佳文. 充气锚杆极限承载力计算方法[J]. 岩土力学, 2013, 34(6): 1696-1702.
    (PENG Wen-xiang, ZHANG Xu, CAO Jia-wen.Calculation method for ultimate bearing capacity of inflatable anchor[J]. Rock and Soil Mechanics, 2013, 34(6): 1696-1702. (in Chinese))
    [9] 刘钟, 郭钢, 张义, 等. 囊式扩体锚杆施工技术与工程应用[J]. 岩土工程学报, 2014, 36(增刊2): 205-211.
    (LIU Zhong, GUO Gang, ZHANG Yi, et al.Construction technology and engineering applications of capsule-type under-reamed ground anchor[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(S2): 205-211. (in Chinese))
    [10] 涂兵雄, 贾金青, 俞缙, 等. 一种拉压复合型锚杆[P]. ZL201420450678.5, 2014.
    (TU Bing-xiong, JIA Jin-qin, YU Jin, et al.A Tension-compression composite anchor[P]. ZL201420450678.5, 2014. (in Chinese))
    [11] 涂兵雄, 刘士雨, 俞缙, 等. 新型拉压复合型锚杆锚固性能研究Ⅰ:简化理论[J]. 岩土工程学报, 2018, 40(12): 2289-2295.
    (TU Bing-xiong, LIU Shi-yu, YU Jin, et al.Analysis of anchorage performance on new tension- compression anchor: Ⅰ simplified theory[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2289-2295. (in Chinese))
    [12] 涂兵雄, 俞缙, 何锦芳, 等. 新型拉压复合型锚杆锚固性能研究Ⅱ:模型试验[J]. 岩土工程学报, 2019, 41(3): 475-483.
    (TU Bing-xiong, YU Jin, HE Jin-fang, et al.Analysis of anchorage performance on new tension-compression anchor:Ⅱ model test[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 475-483. (in Chinese))
    [13] 刘永权, 刘新荣, 杨忠平, 等. 不同类型预应力锚索锚固性能现场试验对比研究[J]. 岩石力学与工程学报, 2016, 35(2): 275-283.
    (LIU Yong-quan, LIU Xin-rong, YANG Zhong-ping, et al.Field test on anchorage performance of different types of prestressed cables[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(2): 275-283. (in Chinese))
    [14] 尤春安, 战玉宝. 预应力锚索锚固段界面滑移的细观力学分析[J]. 岩石力学与工程学报, 2009, 28(10): 1976-1985.
    (YOU Chun-an, ZHANG Yu-bao.Analysis of interfacial slip mesomechanics in anchorage section of prestressed anchor cable[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(10): 1976-1985. (in Chinese))
    [15] GB 50086-2015岩土锚杆与喷射混凝土支护工程技术规范[S]. 2015. (GB 50086-2015 Technical code for engineering of ground anchoring and shotcrete support[S]. 2015. (in Chinese))
计量
  • 文章访问数:  348
  • HTML全文浏览量:  3
  • PDF下载量:  248
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-08
  • 发布日期:  2019-05-24

目录

    /

    返回文章
    返回