• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

纤维加筋微生物固化砂土的力学特性

谢约翰, 唐朝生, 尹黎阳, 吕超, 蒋宁俊, 施斌

谢约翰, 唐朝生, 尹黎阳, 吕超, 蒋宁俊, 施斌. 纤维加筋微生物固化砂土的力学特性[J]. 岩土工程学报, 2019, 41(4): 675-682. DOI: 10.11779/CJGE201904010
引用本文: 谢约翰, 唐朝生, 尹黎阳, 吕超, 蒋宁俊, 施斌. 纤维加筋微生物固化砂土的力学特性[J]. 岩土工程学报, 2019, 41(4): 675-682. DOI: 10.11779/CJGE201904010
XIE Yue-han, TANG Chao-sheng, YIN Li-yang, LÜ Chao, JIANG Ning-jun, SHI Bin. Mechanical behavior of microbial-induced calcite precipitation (MICP)-treated soil with fiber reinforcement[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 675-682. DOI: 10.11779/CJGE201904010
Citation: XIE Yue-han, TANG Chao-sheng, YIN Li-yang, LÜ Chao, JIANG Ning-jun, SHI Bin. Mechanical behavior of microbial-induced calcite precipitation (MICP)-treated soil with fiber reinforcement[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 675-682. DOI: 10.11779/CJGE201904010

纤维加筋微生物固化砂土的力学特性  English Version

基金项目: 国家自然科学基金项目(41572246,41772280); 江苏省自然科学基金项目(BK20171228,BK20170394); 优秀青年科学基金项目(41322019); 国家自然科学基金重点项目(41230636); 中央高校基本科研业务费专项资金项目
详细信息
    作者简介:

    谢约翰(1994- ),男,硕士研究生,主要从事微生物地质工程研究工作。E-mail: xieyuehan@smail.nju.edu.cn。

    通讯作者:

    唐朝生,E-mail:tangchaosheng@nju.edu.cn

  • 中图分类号: TU443

Mechanical behavior of microbial-induced calcite precipitation (MICP)-treated soil with fiber reinforcement

  • 摘要: 微生物固化能有效提高砂土的强度,但同样会导致土体破坏时呈现明显的脆性。为了平衡微生物固化砂土脆性破坏的不利影响,提出纤维加筋与微生物固化相结合的改性方法,即将质量分数为0%,0.05%,0.15%,0.25%和0.30%的聚丙烯纤维与石英砂均匀混合,然后基于微生物诱导碳酸钙沉积(MICP)技术对土样进行固化,并开展了一系列无侧限抗压试验,同时采用酸洗法测定了各组试样中的碳酸钙含量,进一步分析了试样的微观结构及纤维-土颗粒之间的界面作用特征。结果表明:①在微生物固化砂土中掺入纤维,能极大提高土样的无侧限抗压强度和残余强度,并能显著改善土样破坏时的韧性;②纤维掺量对微生物固化砂土的力学特性有重要影响,无侧限抗压强度随纤维掺量总体上呈先增加后减小的趋势,最优纤维掺量为0.15%,峰后残余强度与纤维掺量呈单调正相关关系;③纤维加筋使微生物固化砂土的峰后应力-应变曲线呈阶梯式下降模式,局部存在波浪式起伏特征;④纤维加筋能够提高微生物诱导碳酸钙的沉积效率和产量,与此同时,碳酸钙的胶结作用对纤维加筋效果具有促进作用。纤维加筋技术与MICP技术相结合能够实现优势互补,对提高工程结构的安全性与稳定性具有积极意义。
    Abstract: Microbial cementation can effectively improve the strength of soil, but it can also lead to the obvious brittleness at soil failure. In order to balance the adverse effect of brittleness of the bio-cemented soil, a modified method of combining the fiber reinforcement with the microbial cementation is suggested. The polypropylene fibers, with mass fraction of 0%, 0.05%, 0.15%, 0.25% and 0.30%, are uniformly mixed with silica sand, then the soil samples are bio-cemented based on microbial-induced calcite precipitation (MICP). A series of unconfined compression tests are also carried out, the calcium carbonate content in each group is determined by acid pickling, and the morphological structure of fiber surfaces in soil matrix is characterized by using the scanning electron microscopy (SEM). The result shows that: (1) The fiber reinforcement can greatly improve the unconfined compressive strength and residual strength of soil samples, and can significantly improve the toughness of soil failure. (2) The fiber content has important influence on the mechanical properties of bio-cemented soil. The unconfined compressive strength with fiber content shows a trend of decrease after the first increase in general, the optimal fiber content is 0.15%, and the residual strength after peak is monotonically related with the fiber content. (3) The stress-strain curve of the microorganism solidified sandy soil is in a step-down mode, and the wave type relief features are locally exhibited. (4) The fiber reinforcement can improve the precipitation efficiency and yield of microbial-induced calcite, and at the same time, the bio-cementation effect of the calcium carbonate can promote the effect of fiber reinforcement. The combination of fiber reinforcement technology and MICP technology can realize complementary advantages, which has positive significance for improving the safety and stability of construction.
  • [1] DEJONG J T, SOGA K, KAVAZANJIAN E, et al.Biogeochemical processes and geotechnical applications: progress, opportunities and challenges[J]. Géotechnique, 2013, 63(4): 287-301.
    [2] DEJONG J T, MORTENSEN B M, MARTINEZ B C, et al.Bio-mediated soil improvement[J]. Ecological Engineering, 2010, 36(2): 197-210.
    [3] MARTINEZ B C, DEJONG J T, GINN J, et al.Experimental optimization of microbial-induced carbonate precipitation for soil improvement[J]. Journal of Geotechnical & Geo- environmental Engineering, 2013, 139(4): 587-598.
    [4] QABANY A A, SOGA K, SANTAMARINA C.Factors affecting efficiency of microbially induced calcite precipitation[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2012, 138(8): 992-1001.
    [5] 何稼, 楚剑, 刘汉龙, 等. 微生物岩土技术的研究进展[J]. 岩土工程学报, 2016, 38(4): 643-653.
    (HE Jia, CHU Jian, LIU Han-long, et al.Research advances in biogeotechnologies[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 643-653. (in Chinese))
    [6] 李明东, LI Lin, 张振东, 等. 微生物矿化碳酸钙改良土体的进展、展望与工程应用技术设计[J]. 土木工程学报, 2016(10): 80-87.
    (LI Ming-dong, LI Lin, ZHANG Zhen-dong, et al.Review, outlook and application technology design on soil improvement by microbial induced calcium carbonate precipitation[J]. China Civil Engineering Journal, 2016(10): 80-87. (in Chinese))
    [7] DEJONG J T, FRITZGES M B, NÜSSLEIN K. Microbially induced cementation to control sand response to undrained shear[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2006, 132(11): 1381-1392.
    [8] VAN PAASSEN L A, GHOSE R, VAN Der LINDEN T J, et al. Quantifying biomediated ground improvement by ureolysis: large-scale biogrout experiment[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(12): 1721-1728.
    [9] 程晓辉, 杨钻, 李萌, 等. 岩土材料微生物改性的基本方法综述[J]. 工业建筑, 2015, 7: 1-7.
    (CHENG Xiao-hui, YANG Zhan, LI Meng, et al.Microbial modified geomaterials: a methodology review[J]. Industrial Construction, 2015, 7: 1-7. (in Chinese))
    [10] CHU J, IVANOV V, STABNIKOV V, et al.Microbial method for construction of aquaculture pond in sand[J]. Géotechnique, 2013, 63(10): 871-875.
    [11] 钱春香, 罗勉, 潘庆峰, 等. 自修复混凝土中微生物矿化方解石的形成机制[J]. 硅酸盐学报, 2013(5): 620-626.
    (QIAN Chun-xiang, LUO Mian, PAN Qing-feng, et al.Mechanism of microbially induced calcite precipitation in self-healing concrete[J]. Journal of the Chinese Ceramic Society, 2013(5): 620-626. (in Chinese))
    [12] 钱春香, 王安辉, 王欣. 微生物灌浆加固土体研究进展[J]. 岩土力学, 2015, 36(6): 1537-1548.
    (QIAN Chun-xiang, WANG An-hui, WANG Xin.Advances of soil improvement with bio-grouting[J]. Rock and Soil Mechanics, 2015, 36(6): 1537-1548. (in Chinese))
    [13] 崔明娟, 郑俊杰, 章荣军, 等.化学处理方式对微生物固化砂土强度影响研究[J]. 岩土力学, 2015, 36(增刊1): 392-396.
    (CUI Ming-juan, ZHENG Jun-jie, ZHANG Rong-jun, et al.Study of effect of chemical treatment on strength of bio-cemented sand[J]. Rock and Soil Mechanics, 2015, 36(S1): 392-396. (in Chinese))
    [14] 崔明娟, 郑俊杰, 赖汉江. 颗粒粒径对微生物固化砂土强度影响的试验研究[J]. 岩土力学, 2016(增刊2): 397-402.
    (CUI Ming-jun, ZHENG Jun-jie, LAI Han-jiang.Experimental study of effect of particle size on strength of bio-cemented sand[J]. Rock and Soil Mechanics, 2016(S2): 397-402. (in Chinese))
    [15] 崔明娟, 郑俊杰, 赖汉江. 菌液注射方式对微生物固化砂土动力特性影响试验研究[J]. 岩土力学, 2017, 38(11): 3173-3178.
    (CUI Ming-juan, ZHENG Jun-jie, LAI Han-jiang.Effect of method of biological injection on dynamic behavior for bio-cemented sand[J]. Rock and Soil Mechanics, 2017, 38(11): 3173-3178. (in Chinese))
    [16] 刘璐, 沈扬, 刘汉龙, 等. 微生物胶结在防治堤坝破坏中的应用研究[J]. 岩土力学, 2016, 37(12): 3410-3416.
    (LIU Lu, SHEN Yang, LIU Han-long, et al.Application of bio-cement in erosion control of levees[J]. Rock and Soil Mechanics, 2016, 37(12): 3410-3416. (in Chinese))
    [17] 刘汉龙, 肖鹏, 肖杨, 等. MICP胶结钙质砂动力特性试验研究[J]. 岩土工程学报, 2018, 40(1): 38-45.
    (LIU Han-long, XIAO Peng, XIAO Yang, et al.Dynamic behaviors of MICP-treated calcareous sand in cyclic tests[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 38-45. (in Chinese))
    [18] JIANG N J, YOSHIOKA H, YAMAMOTO K, et al.Ureolytic activities of a urease-producing bacterium and purified urease enzyme in the anoxic condition: implication for subseafloor sand production control by microbially induced carbonate precipitation (MICP)[J]. Ecological Engineering, 2016, 90: 96-104.
    [19] JIANG N J, SOGA K.The applicability of microbially induced calcite precipitation (MICP) for internal erosion control in gravel-sand mixtures[J]. Géotechnique, 2016, 67(1): 42-55.
    [20] TOÉ Casagrande, MICHÉLE Dal, COOP M R, et al. Behavior of a fiber-reinforced bentonite at large shear displacements[J]. Journal of Geotechnical and Geo- environmental Engineering, 2006, 132(11): 1505-1508.
    [21] CONSOLI N C, VENDRUSCOLO M A.Fiber reinforcement effects on sand considering a wide cementation range[J]. Geotextiles & Geomembranes, 2009, 27(3): 196-203.
    [22] GRAY D H, AL-REFEAI T.Behavior of fabric versus fiber-reinforced sand[J]. Geotechnical and Geological Engineering, 1986, 112(8): 804-820.
    [23] 唐朝生, 施斌, 高玮, 等. 含砂量对聚丙烯纤维加筋黏性土强度影响的研究[J]. 岩石力学与工程学报, 2007, 26(a01): 2968-2973.
    (TANG Chao-sheng, SHI Bin, GAO Wei, et al.Study on effects of sand content on strength of polypropylene fiber reinforced clay soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(a01): 2968-2973. (in Chinese))
    [24] SANTOS APSD, CONSOLI N C, BAUDET B A.The mechanics of fiber-reinforced sand[J]. Géotechnique, 2010, 60(10): 791-799.
    [25] TANG C S, SHI B, CAI Y, et al.Experimental study on polypropylene fiber improving soft soils[J]. Rock & Soil Mechanics, 2007, 28(9): 1796-1800.
    [26] LI J, TANG C S WANG D Y, et al. Effect of discrete fiber reinforcement on soil tensile strength[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2014, 6(2): 133-137.
    [27] TANG C S, PEI X J, WANG D Y.Interfacial micro-mechanical behavior of discrete fiber-reinforced soil[M]// Soil Behavior and Geomechanics, ZHANG Xiong, CHU Jian, BULUT R, ed. ASCE, 2014.
    [28] PRABAKAR J, SRIDHAR R S.Effect of random inclusion of sisal fibre on strengthbehaviour of soil[J]. Construction and Building Material, 2002, 16(2): 123-131.
    [29] AKBULUT S, ARASAN S, KALKAN E.Modification of clay soils using scrap tire rubber and synthetic fibers[J]. Applied Clay Science, 2007, 38(1): 23-32.
    [30] 蔡奕, 施斌, 高玮, 等. 纤维石灰土工程性质的试验研究[J]. 岩土工程学报, 2006, 28(10): 1283-1287.
    (CAI Yi, SHI Bin, GAO Wei, et al.Experimental study on engineering properties of fibre-lime treated soils[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(10): 1283-1287. (in Chinese))
    [31] 吴继玲, 张小平. 聚丙烯纤维加筋膨胀土强度试验研究[J].土工基础, 2011, 24(6): 71-73.
    (WU Ji-ling, ZHANG Xiao-ping.Study on strength of polypropylene fiber reinforced expansive soil[J]. Soil Engineering and Foundation, 2011, 24(6): 71-73. (in Chinese))
    [32] 王鹏, 唐朝生, 孙凯强, 等. 纤维加筋市政污泥固结特性试验研究[J]. 工程地质学报, 2015, 23(4): 687-694.
    (WANG Peng, TANG Chao-Sheng, SUN Kai-Qiang, et al.Experimental investigation on consolidation properties of fiber reinforced municipal sludge[J]. Journal of Engineering Geology, 2015, 23(4): 687-694. (in Chinese))
    [33] 王德银, 唐朝生, 李建, 等. 纤维加筋非饱和黏性土的剪切强度特性[J]. 岩土工程学报, 2013, 35(10): 1933-1940.
    (WANG De-yin, TANG Chang-sheng, LI Jian, et al.Shear strength characteristics of fiber-reinforced unsaturated cohesive soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 35(10): 1933-1940. (in Chinese))
    [34] TANG C S, WANG D Y, CUI Y J, et al.Tensile strength of fiber reinforced soil[J]. Journal of Materials in Civil Engineering, 2016, 28(7): 04016031.
    [35] LI M, LI L, OGBONNAYA U, et al.Influence of fiber addition on mechanical properties of MICP-Treated sand[J]. Journal of Materials in Civil Engineering, 2016, 28(4): 04015166.
    [36] 李建, 唐朝生, 王德银, 等. 基于单根纤维拉拔试验的波形纤维加筋土界面强度研究[J]. 岩土工程学报, 2014, 36(9): 1696-1704.
    (LI Jian, TANG Chao-sheng, WANG De-yin, et al.Single fiber pullout tests on interfacial shear strength of wave-shape fiber-reinforced soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 36(9): 1696-1704. (in Chinese))
    [37] TANG C S, SHI B, GAO W, et al.Strength and mechanical behavior of short polypropylene fiber reinforced and cement stabilized clayey soil[J]. Geotextiles & Geomembranes, 2007, 25(3): 194-202.
    [38] TANG Chao-sheng, SHI Bin, ZHAO Li-zheng.Interfacial shear strength of fiber reinforced soil[J]. Geotextiles & Geomembranes, 2010, 28(1): 54-62.
计量
  • 文章访问数:  559
  • HTML全文浏览量:  12
  • PDF下载量:  340
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-01
  • 发布日期:  2019-04-24

目录

    /

    返回文章
    返回