• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于节理产状不确定性的边坡稳定性及敏感度分析

王双, 陈征宙, 吴强, 黄彬彬, 胡谢飞

王双, 陈征宙, 吴强, 黄彬彬, 胡谢飞. 基于节理产状不确定性的边坡稳定性及敏感度分析[J]. 岩土工程学报, 2013, 35(2): 348-354.
引用本文: 王双, 陈征宙, 吴强, 黄彬彬, 胡谢飞. 基于节理产状不确定性的边坡稳定性及敏感度分析[J]. 岩土工程学报, 2013, 35(2): 348-354.
WANG Shuang, CHEN Zheng-zhou, WU Qiang, HUANG Bin-bin, HU Xie-fei. Stability and sensitivity analysis of slopes based on uncertainty of joint orientations[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(2): 348-354.
Citation: WANG Shuang, CHEN Zheng-zhou, WU Qiang, HUANG Bin-bin, HU Xie-fei. Stability and sensitivity analysis of slopes based on uncertainty of joint orientations[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(2): 348-354.

基于节理产状不确定性的边坡稳定性及敏感度分析  English Version

详细信息
  • 中图分类号: TU43

Stability and sensitivity analysis of slopes based on uncertainty of joint orientations

  • 摘要: 用Monte Carlo法对服从Fisher分布的节理产状进行模拟,计算每个模拟产状的安全系数,并统计拟合安全系数的分布规律及边坡的可靠度。为同时考虑安全系数对节理倾角和倾向的敏感度,提出了以安全系数对节理面法向矢量球面距离的敏感度来反映其对产状敏感度的分析方法,并建议用平均值和最大值两个指标来反映任意产状的敏感度。用赤平投影方法在赤平图上绘制安全系数等值线图和敏感度等值线图,实现了计算结果的可视化展示。算例分析表明:此方法实现了对节理产状不确定性的全面直观分析,消除了产状测量数据离散化可能造成的安全隐患,解决了以往产状敏感度分析中需单独对倾角或倾向分析的不足。
    Abstract: The orientations of joints which obey the Fisher distribution are simulated according to the Monte Carlo method. The safety factor of each simulated orientation is calculated and the distribution rules of safety factor and the reliability of slopes are obtained by statistical fitting. In order to consider the sensitivity of safety factor to dip direction and dip of joints simultaneously, an idea that the sensitivity of safety factor to the orientation is represented by that to spherical distance of normal vector is proposed. It is also suggested to characterize the sensitivity to arbitrary orientation by means of the sensitivity of average and the maximum value. Drawing safety factor and sensitivity contour map on stereonet makes it possible to visualize the analysis results. The analysis of a specific problem shows that the recommended analytical methods are helpful to gain a complete and intuitive view of the effect of joint uncertainty on safety factor. The potential safety concerns due to the discrete measured data of orientations may be eliminated and the deficiency that the sensitivity analysis is formerly processed by dealing with dip and dip direction respectively can be solved.
  • [1] 陈剑平. 随机不连续面三维网络计算机模拟原理[M]. 长春:东北师范大学出版社, 1995.(CHEN Jian-ping.
    Principals of 3-D network computer modeling technique for random discontinuities of rock mass[M]. Changchun: North East Normal University Press, 1995. (in Chinese))
    [2] 于青春,薛果夫,陈德基. 裂隙岩体一般块体理论[M]. 北京:中国水利水电出版社, 2007.(YU Qing-chun, XUE Guo-fu, CHEN De-ji.
    General block theory of fractured rock mass[M]. Beijing: China Water Power Press, 2007. (in Chinese))
    [3] WU T H, KRAFT L M. Safety analysis of slopes[J]. Journal of Soil Mechanics and Foundation Division, 1970,96(2):609-630.
    [4] ALONSO E E. Risk analysis of slopes and its application to slopes in Canadian sensitive clays[J]. Géotechnique, 1976,26(3):453-472.
    [5] CHRISTIAN J T, LADD C C, BAECHER G B. Reliability applied to slope stability analysis[J]. Journal of Geotechnical Engineering, 1994,120(12):2181-2207.
    [6] MALKAWI A I H, HASSAN W F, ABDULLA F A. Uncertainty and reliability analysis applied to slope stability[J]. Structural Safety, 2000,22(2):161-187.
    [7] TOBUTT D C. Monte carlo simulation methods for slope stability[J]. Computer and Geosciences, 1982,8(2):199-208.
    [8] 陈祖煜. 土质边坡稳定分析——原理、方法和程序[M]. 北京:中国水利水电出版社, 2002.(CHEN Zu-yu.
    Soil slope stability analysis: theory, methods and programs[M]. Beijing: China Water Power Press, 2002. (in Chinese))
    [9] EVERT Hoek. Practical rock engineering[C]// Chapter 8. Rockscience Site Web (http://www.rocscience.com/ education/hoeks_corner#), 2008.
    [10] 何满潮,苏永华,景海河. 块状岩体的稳定可靠性分析模型及应用[J]. 岩石力学与工程学报, 2002,21(3):343-348. (HE Man-chao, SU Yong-hua, JING Hai-he.
    Reliability analysis model of blocky rockmass stability and its application[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(3): 343-348. (in Chinese))
    [11] 赵 奎,王晓军,赵 康,等. 节理面构成块体的概率公式及其工程应用[J]. 岩土力学, 206,27(3):369-372. (ZHAO Kui, WANG Xiao-jun, ZHAO Kang, et al. A new probability formula of blocks cut by joint planes and its engineering application[J]. Rock and Soil Mechanics, 2006, 27(3)
    [12] 孙树林,朱 杰. 节理化岩质边坡的关键块体可靠度分析[J]. 岩石力学与工程学报, 2007,26(1):131-136. (SUN Shu-lin, ZHU Jie. Reliability analysis of key block for a jointed rock slope[J]. Chinese Journal of Rock Mechanic and Engineering, 2007, 26(1)
    [13] 许湘华,曲广琇,方理刚. 基于节理几何参数不确定性的边坡稳定性分析[J]. 中南大学学报自然科学版, 2010,41(3):1139-1145. (XU Xiang-hua, QU Guang-xiu, FANG Li-gang.
    Reliability analysis of rock slope based on uncertainty of joint geometry parameter[J]. Journal of Central South University (Science and Technology), 2010, 41(3): 1139-1145. (in Chinese))
    [14] 孙宪春,万 力,蒋小伟. 节理产状分组的k均值聚类分析及其分组结果的费歇尔分布检验法[J]. 岩土力学, 2008,29(增刊1):533-537. (SUN Xian-chun, WAN Li, JIANG Xiao-wei.
    Effective categorization of joints by k-means and cluster analysis its verification by Fisher distribution[J]. Journal of Rock and Soil Mechanics, 2008, 29(S1): 533-537. (in Chinese))
    [15] FISHER N I, LEWIS T, EMBLETON B J J. Statistical analysis of spherical data[M]. England: Cambridge University Press, 1993.
    [16] HOEK E, BRAY J W. Rock slope engineering[M]. London: Inst of Min and Metal, 1981.
    [17] 白云峰,周德培,冯 君. 顺向坡岩层走向与边坡走向夹角的上限值[J]. 西南交通大学学报, 2005,40(3):326-329. (BAI Yun-feng, ZHOU De-pei, FENG Jun. Upper limit of angle between strikes of slope and strata for dip slope[J]. Journal of Southwest Jiaotong University, 2005, 40(3)
    [18] 柴 波,殷坤龙. 顺向坡岩层倾向坡向夹角对斜坡稳定性的影响[J]. 岩石力学与工程学报, 2009,28(3):628-634. (CHAI Bo, YIN Kun-long.
    Influence of intersection angle between trend of slope and strata on stability of bedding slope[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(3): 628-634. (in Chinese))
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-04-16
  • 发布日期:  2013-03-06

目录

    /

    返回文章
    返回