• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于数字图像处理技术的岩石节理分形描述

陈世江, 朱万成, 张敏思, 于庆磊

陈世江, 朱万成, 张敏思, 于庆磊. 基于数字图像处理技术的岩石节理分形描述[J]. 岩土工程学报, 2012, 34(11): 2087-2092.
引用本文: 陈世江, 朱万成, 张敏思, 于庆磊. 基于数字图像处理技术的岩石节理分形描述[J]. 岩土工程学报, 2012, 34(11): 2087-2092.
CHEN Shi-jiang, ZHU Wan-cheng, ZHANG Min-si, YU Qing-lei. Fractal description of rock joints based on digital image processing technique[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 2087-2092.
Citation: CHEN Shi-jiang, ZHU Wan-cheng, ZHANG Min-si, YU Qing-lei. Fractal description of rock joints based on digital image processing technique[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 2087-2092.

基于数字图像处理技术的岩石节理分形描述  English Version

基金项目: 国家自然科学基金项目(50934006,51111130206,51128401);中央高校基本科研业务费项目(N110201001,N100601004);霍英东教育基金资助课题(122023);中国-南非联合研究计划项目(CS06-L01);高等学校博士学科点专项科研基金(20110042110035);辽宁省教育厅科学技术研究项目(LT2010033)
详细信息
    作者简介:

    陈世江(1979– ),男,河北张家口人,讲师,博士研究生,主要从事采矿工程与岩石力学等方面的研究与教学工作。E-mail: chenshijiang_2003@163.com

  • 中图分类号: TU47

Fractal description of rock joints based on digital image processing technique

  • 摘要: 岩石节理的粗糙度对结构面的剪切强度起着重要的作用.分形维数对节理的次级细微粗糙结构能够进行很好的描述,而对节理的一级起伏结构体现并不明显.考虑了节理形态的层次性,用分形维数代表节理的次级精细结构,即节理的粗糙度;用起伏度表示节理的一级波状形态,据此提出用分形维数D和起伏度Wd两个指标来描述JRC(节理粗糙度系数),并给出相应的计算公式.另外,针对工程实践中分形维数准确快速量测存在的困难,本文以摄影测量为基础,借助数字图像处理技术,在VC++平台下开发了节理轮廓线分形维数计算程序,为分维较准确方便地应用于工程实践做了有益的探索.
    Abstract: Joint roughness has an essential in?uence on the shear behavior of rock joints. Fractal dimensions (D) can be used to effectively reflect the roughness property contributed by the secondary asperity; however, it is not ideal to represent the asperity contributed by the first-order asperity. On the basis of the asperity of a rough joint occurring on many scales, the fractal parameter is used to show the roughness character offered by the secondary asperity, while the degree of a waviness (wd) is used to reflect the roughness property at the first order. In this respect, joint roughness coefficient is represented using the fractal dimensions (D) and degree of the waviness (wd), and their relationship is established. On the other hand, in virtue of the difficulties in calculating the value of D in engineering practices, a procedure is provided for obtaining the fractal dimension based on the digital image of rock joints. It will be helpful for applying the fractal dimension to describing the JRC in engineering practices.
  • [1] 谢和平. 岩石节理的分形描述[J]. 岩土工程学报, 1995, 17(1): 18-22
    XIE He-ping. Fractal description of rock joints[J]. Chinese Journal of Geotechnical Engineering, 1995, 17(1): 18-22. (in Chinese))
    [2] BARTON N. The shear strength of rock joints in theory and practice[J]. Rock Mech, 1977, 10(2): 1-54
    [3] 夏才初. 岩石结构面的表面形态特征研究[J]. 工程地质学报, 1996, 4(3): 71-77
    XIA Cai-chu. A study on the surface morphological feathers of structural faces[J]. Journal of Engineering Geology , 1996, 4(3): 71-77. (in Chinese))
    [4] 杜时贵. JRC修正直边法的数学表达[J]. 工程地质学报, 1996, 4(2): 36-43
    DU Shi-gui. Mathematical expression of JRC modified straight edge[J]. Journal of Engineering Geology, 1996, 4(2): 36-43. (in Chinese))
    [5] 王建锋. 岩体结构面粗糙度JRC研究进展[J]. 地质科技情报, 1991, 10(2): 73-77
    WANG Jian-feng. Development and tendency in research of joint roughness coefficient of rock masses[J]. Geological Science and Technology Information, 1991, 10(2): 73-77. (in Chinese))
    [6] 秦四清. 节理粗糙度曲线的分维特征[J]. 成都地质学院学报, 1993, 20(4): 109-112
    QIN Si-qing. Fractal dimension characteristics of joint roughness curves[J]. Journal of Chengdu College Geology, 1993, 20(4): 109-112. (in Chinese))
    [7] 谢和平. 分形-岩石力学导论[M]. 北京: 科学出版社, 1996: 297. (XIE He-ping. Fractal-rock mechanics[M]. Beijing: SciencePress, 1996
    [8] SEIDEL J P, HABERFIELD C M. Towards an understanding of joint roughness[J]. Rock Mechanics and Rock Engineering, 1995, 28(2): 69-92
    [9] LEE Y H, HAR J R, BARS D J. The fractal dimension as a measure of the roughness of rock discontinuity profiles[J]. Int J Rock Mech Min Sci Abstr, 1990, 27: 453-464
    [10] TURK N, GREIG M J, DEARMAN W R. Characterization of rock joint surfaces by fractal dimension[C]// Proceedings of the 28th Symposium on Rock Mechanics, Tucson, 1987: 1223-1236.
    [11] ODLING N E. Natural fracture profiles, fractal dimension and joint roughness coeffcients[J]. Rock Mechanics and Rock Engineering, 1994, 27(3): 135-153
    [12] KULATILAKE PHSW, UM J, PAN G. Requirements for accurate estimation of fractal parameters for self-affine roughness profiles using the line scaling method[J]. Rock Mechanics and Rock Engineering, 1997, 30(4): 181-206
    [13] YANG Z Y. The effect of asperity order on the roughness of rock joints[J]. Rock Mechanics & Mining Sciences, 2001, 38: 745-752
    [14] SEZER Ebru. A computer program for fractal dimension (FRACEK) with application on type of mass movement characterization[J]. Computers & Geosciences, 2010, 36(3): 391-396
    [15] BIRD N, DIAZ M C, SAA A,,et al. Fractal and multifractal analysis of pore-scale images of soil[J]. Journal of Hydrology, 2006, 322: 211-219
    [16] 彭瑞东. 二维数字图像分形维数的计算方法[J]. 中国矿业大学学报, 2004, 33(1): 19-24
    PENG Rui-dong. Computation method of fractal dimension for 2-D digital image[J]. Journal of Chain University of Mining and Technology, 2004, 33(1): 19-24. (in Chinese))
    [17] 易顺民, 朱珍德. 裂隙岩体损伤力学导论[M]. 北京: 科学出版社, 2006: 136. (YI Shun-min, ZHU Zhen-de. Fracture rock damnification mechanics introduction[M]. Beijing: SciencePress, 2006
计量
  • 文章访问数:  1121
  • HTML全文浏览量:  1
  • PDF下载量:  855
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-01-07
  • 发布日期:  2012-12-19

目录

    /

    返回文章
    返回