• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

邻近桩基受隧道开挖影响的多因素三维有限元分析

韩进宝, 熊巨华, 孙庆, 杨敏

韩进宝, 熊巨华, 孙庆, 杨敏. 邻近桩基受隧道开挖影响的多因素三维有限元分析[J]. 岩土工程学报, 2011, 33(sup2): 339-344.
引用本文: 韩进宝, 熊巨华, 孙庆, 杨敏. 邻近桩基受隧道开挖影响的多因素三维有限元分析[J]. 岩土工程学报, 2011, 33(sup2): 339-344.
HAN Jin-bao, XIONG Ju-hua, SUN Qing, YANG Min. Multi-factor three-dimensional finite element analysis of effects of tunnel construction on adjacent pile foundation[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(sup2): 339-344.
Citation: HAN Jin-bao, XIONG Ju-hua, SUN Qing, YANG Min. Multi-factor three-dimensional finite element analysis of effects of tunnel construction on adjacent pile foundation[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(sup2): 339-344.

邻近桩基受隧道开挖影响的多因素三维有限元分析  English Version

详细信息
    作者简介:

    韩进宝 (1985 – ) ,男,河北石家庄人,硕士研究生,从事岩土工程方面的研究。

  • 中图分类号: TU473

Multi-factor three-dimensional finite element analysis of effects of tunnel construction on adjacent pile foundation

  • 摘要: 建立了邻近桩基受隧道开挖影响的位移控制( DCM )三维有限元数值分析模型,通过与离心机实验结果的对比,验证了该数值模型的有效性。在此基础上进行了一系列的参数模拟试验,结果表明:桩基内力和变形都随桩长与隧道的埋深比的增大而减小,但弯矩的降幅不明显;桩的轴力、侧向变形、沉降以及弯矩都随隧道与桩水平距离 Xpile 的增大而减小;桩身的最大弯矩和最大轴力都随地层损失比的增大而增大。桩身内力和变形随着土体固结的完成而逐渐增大,轴力和弯矩分别增加约 1 倍和 2 倍,工程中应考虑隧道开挖对桩基的长期影响。
    Abstract: Using the displacement control method (DCM), a three-dimensional finite element model is established to analyze the effects of tunnel construction on the adjacent pile foundation, and the effectiveness of this three-dimensional model is demonstrated through the back analysis of centrifuge tests. Based on these, parametric studies are implemented. The results of numerical simulations show that the internal force and deformation of tunneling-induced pile depend mainly on the pile-tunnel distance X pile , pile length to tunnel depth ratio L p /H tun and volume loss V L . The internal force and deformation decrease with the incense of L p /H tun , but the bending moment is not significantly affected. With the increase of X pile the axial force and lateral deformation of the pile and settlement and bending moment all decrease, both the maximum bending moment and the maximum axial force of the pile increase with the increase of V L , when V L =3.3%, the internal force and deformation of the pile double or treble those after the consolidation of the soil, and the tunneling-induced long-term behavior of the pile should be considered in the tunnel design and construction.
  • [1] MORTON J D, KING K H. Effects of tunneling on the bearing capacity and settlement of piled foundations[C]// Proc. Tunneling, London, 1979: 57 – 68.
    [2] LOGANATHAN N, POULOS H G, STEWART D P. Centrifuge model testing of tunneling-induced ground and pile deformations[J]. Géotechnique, 2000, 50 (3): 283 – 294.
    [3] CHEN L T, POULOS H G, LOGANATHAN N. Pile responses caused by tunnelling[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999, 125 (3): 207 – 215.
    [4] LOGANATHAN N, POULOS H G, XU K J. Ground and pile-group response due to tunneling[J]. Soils and Foundations, 2001, 41 (1): 57 – 67.
    [5] 李 早 , 黄茂松 . 隧道开挖对群桩竖向位移和内力影响分析 [J]. 岩土工程学报 , 2007, 29 (3): 398 – 402. (LI Zao, HUANG Mao-song. Analysis of settlement and internal forces of group pile due to tunneling[J]. Chinese Journal of Geotechnical Engineering, 2007, 29 (3): 398 – 402. (in Chinese))
    [6] 李 早 , 黄茂松 . 隧道施工条件下临近群桩水平力学反应分析方法 [J]. 工业建筑 , 2009, 39 (1): 79 – 84. (LI Zao, HUANG Mao-song. A analytical method for lateral behavior of pile groups adjacent to tunneling[J]. Industrial Construction, 2009, 39 (1): 79 – 84. (in Chinese))
    [7] SIMPSON B, O’RIORDON N J, CROFT D D. A computer model for the analysis of ground movements in London clay[J]. Géotechnique , 1979, 29 (2): 149 – 175.
    [8] DASARi G R. Modelling the variation of soil stiffness during sequential construction [D]. Cambridge: University of Cambridge, 1996.
    [9] ADDENBROOKE T I, POTTS D M, PUZRIN A M. The influence of pre-failure soil stiffness on the numerical analysis of tunnel construction[J]. Géotechnique, 1997, 47 (3): 693 – 712.
    [10] LOGANATHAN N, POULOS H G.. Analytical prediction for tunneling-induced ground movements in clays[J]. Journal of Geotechnical and Geoenviromental Engineering, 1998, 124 (9): 846 – 856.
    [11] PARK K H. Elastic solution for tunneling-induced ground movements in clays[J]. International Journal of Geomechanics, 2004, 4 (4): 310 – 318.
    [12] CHENG C Y, DASARI G R, CHOW Y K, et al. Finite element analysis of tunnel-soil-pile interaction using displacement controlled model[J]. Tunnelling and Underground Space Technology, 2007, 22 (4): 450 – 466.
    [13] 杜佐龙 , 黄茂松 , 李 早 . 基于地层损失比的隧道开挖对临近群桩影响的 DCM 方法 [J]. 岩土力学 , 2009, 30 (10): 3043 – 3047. (DU Zuo-long, HUANG Mao-song, LI Zao. DCM-based on ground loss for response of group piles induced by tunneling[J]. Rock and Soil Mechanics, 2009, 30 (10): 3043 – 3047. (in Chinese))
    [14] ONG C W, LEUNG C F, YONG K Y, et al. Experimental study of tunnel-soil-pile interaction[C]// Proc Underground Singapore, Singapore, 2007: 55 – 66.
    [15] SCHANZ T, VERMEER P A, BONNIER P G. The hardening soil model: formulation and verification[C]// Beyond 2000 in Computational Geotechnics, Balkema: 1999: 281 – 296.
    [16] LEE K M, ROWE R K, LO K Y. Subsidence owing to tunneling I: estimating the gap parameter[J]. Canadian Geotechnical Journal, 1992, 29 (6): 929 – 940.
    [17] PANG C H. The effects of tunnel construction on nearby pile foundation[D]. Singapore: National University of Singapore, 2005.
    [18] JACOBSZ S W, STANDING J R, MAIR R J, et al. Centrifuge modeling of tunneling near driven piles[J]. Soils and Foundations, 2004, 44 (1): 49 – 56.
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-08-07
  • 发布日期:  2011-12-06

目录

    /

    返回文章
    返回