Application prospects and challenges of intelligent technology in urban coastal soft soil engineering
-
摘要: 在城市建设高质量发展阶段,滨海地区面临迫切的城市更新需求。这类地区通常环境敏感复杂,传统的软土工程数据采集与分析手段往往需借助大量的人力、物力,且难以保证大范围、高效率、不间断地执行,智慧化技术成为解决这一问题的重要手段。梳理了智慧化技术在数据感知、智能预测和可视化交互3方面的现状,分别对比总结了接触式、非接触式感知技术,大数据分析与参数化建模方法,数字孪生与交互式平台,及其在软土工程中的应用与挑战,为深入理解智慧化技术的内涵及应用前景提供支持,助力行业新质生产力发展。Abstract: Due to the high-quality urban development, the coastal areas are confronted with demands for urban renewal. These regions typically exhibit environmental sensitivity and complexity, while the conventional approaches often rely on manpower and resources, making it arduous to ensure extensive coverage, high efficiency and uninterrupted implementation. Consequently, the intelligent technology has emerged as a crucial means to tackle this issue. This study provides an overview of the current state of the intelligent technology in three key aspects: data perception, intelligent prediction, and visual interaction. The applications and challenges of contact and non-contact measurements, big data analysis and parametric modeling as well as the digital twin and interactive platform in soft soil engineering are summarized. It aims to facilitate a comprehensive understanding of the essence of the intelligent technology and its prospects while contributing towards fostering new quality productive forces.
-
Keywords:
- soft soil foundation /
- intelligent monitoring /
- data collection /
- model building
-
0. 引言
随着“西部大开发”战略的实施及“一带一路”倡议的推动,西北黄土地区将不断地快速发展[1],进行大量的工程建设,需要对工程建设中涉及的黄土进行深入的研究。黄土的成因[1]、基本物理力学性质[2, 3]、微结构特征[4-5]和结构性[6]等均作了较为深入的研究,但大多数试验研究中都是针对垂直层面取样的试样。对于主要受竖向荷载作用的黄土地基基础工程及类似工程来说,取垂直层面试样进行研究是合理的;而对于受力状态较为复杂的边坡和隧道及地下结构等主应力方向未必水平的工程[7]来说,有必要研究黄土力学性质的各向异性[8]。因此学者们对黄土的各向异性产生了浓厚的兴趣。
采取竖直向与水平向试样进行黄土各向异性研究的结论并非完全一致。有结果表明原状黄土变形模量竖直向大于水平向[7],抗剪强度竖直向明显高于水平向[9-11];有结果表明水平向黏聚力大于竖直向黏聚力,内摩擦角变化不大[12]。不同层位的黄土结构参数与其抗剪强度表现出不同的各向异性特征[13]。有些学者增加了取样角度,有结果表明:竖直向剪切面的抗剪强度>水平向的剪切面抗剪强度>45°方向剪切面抗剪强度[14];有研究认为偏差应力在竖直方向最大,在与竖直面呈45°或90°方向时最小[15];也有研究结果表明黄土的无侧限抗压强度随试样的试验平面由水平面向竖直面变化而降低[16]。以上研究表明,不同土体的各向异性存在差异。
黄土力学性质的各向异性特点是其结构性的表现方式[7]。为研究黄土强度的各向异性规律,分析不同土体各向异性差异的原因,本文通过对与沉积面呈不同角度不同含水率的黄土试样进行无侧限抗压强度试验,得出原状、重塑黄土的无侧限抗压强度,计算不同角度不同含水率试样的初始结构性参数。通过对比分析其强度与结构性指标与取样角度的关系,得出了黄土强度及结构性的各向异性规律,并分析了其原因。
1. 试验方案
1.1 试验用土
本试验所用土样取自甘肃省兰州市兰州大学榆中校区附近某直立边坡,去除表层土,采用人工掏槽法取样,经室内试验得物性指标如表1所示。
表 1 黄土试样的物性指标Table 1. Physical properties of loess干密度/(g·cm-3) 天然含水率/% 土粒相对质量密度 塑限/% 液限/% 塑性指数 1.250 2.0 2.70 20.0 28.0 8.0 1.2 试验方案
本试验分别制作不同含水率(2%, 5%, 10%, 15%, 18%, 20%, 25%, 28%,饱和)与沉积面(压实面)成不同角度(θ=0°, 30°, 45°, 60°, 90°,如图1所示)的原状、重塑黄土共85个试样,进行无侧限抗压强度试验,试验采用南京自动化仪器厂生产的常规应变控制式三轴剪力仪,控制轴向变形速率为0.368 mm/min。试验采用圆柱形试样,其直径为39.1 mm,高为80 mm。
2. 黄土的强度各向异性分析
2.1 原状黄土的试验结果与分析
根据预定方案进行试验,得到不同含水率不同取样角度原状黄土的应力-应变曲线,见图2,其中q表示轴向应力(kPa), ε表示轴向应变(%)。
从图2(a)可以看出:当含水率w=2%时,取样方向与沉积面成90°时,原状黄土试样的无侧限抗压强度qu0最大;取样方向与沉积面成0°时原状黄土试样的无侧限抗压强度次之;取样方向与沉积面呈60°, 45°时依次减小,最小的为取样方向与沉积面呈30°时的无侧限抗压强度。图2(b)~(h)也表现出相同的规律。因此,可以得出:含水率相同时,取样方向与沉积面夹角不同时,试样强度不同,表现出各向异性,且具有相同的规律,即(qu0)90°>(qu0)0°>(qu0)60°>(qu0)45°>(qu0)30°。从图2还可以看出:随着含水率的增加,不同角度所取试样的无侧限抗压强度之间的差值越来越小,当试样达到饱和含水率时,不同取样方向试样的应力-应变曲线差异极小,说明随着含水率的增加原状黄土强度的各向异性在逐渐减弱。
根据库仑强度理论,破裂面与最大主应力面(水平方向)呈45°+φ/2, φ为试样的内摩擦角。因此可得出不同取样角度试样的破裂面与沉积面的夹角a,如图3所示。
从图3可以看出:当取样角度θ=90°时,破裂面与沉积面之间的夹角α=45°+φ/2,最大;θ=30°时,α=15°-φ/2,最小。兰州黄土的内摩擦角φ一般在30°左右[17],因此,45°+φ/2>45°-φ/2>15°+φ/2>φ/2>15°-φ/2,即破裂面与沉积面之间的夹角α从大到小排列所对应的取样角度分别为90°, 0°, 60°, 45°, 30°。这个规律与前述不同取样角度试样的强度大小规律是一致的,可见强度的大小与破裂面和沉积面之间夹角α的大小密切相关。α的计算式如下:
(1) 试样破裂面与沉积面之间的夹角越大,无侧限抗压强度qu越大;反之越小。当α=|φ/2+θ-45°|=0时,即取样角度θ=45°-φ/2时,强度最小。在试验的几个取样角度中,θ=30°所取试样的破裂面方向最接近水平沉积的层面,而层面是天然的软弱面,故此时试样的无侧限抗压强度最小,证明了前述规律。
2.2 重塑黄土的试验结果与分析
根据预定方案进行试验,使取样方向与压实面呈不同角度,得到不同含水率不同取样角度重塑黄土的应力-应变曲线见图4。
从图4可以看出:重塑黄土与原状黄土具有相似的强度各向异性,即(qur)90°>(qur)0°>(qur)60°>(qur)45°>(qur)30°。其原因在于重塑黄土制样的分层压实过程中形成的压实层面类似于原状黄土的沉积面,因此,不同角度取样的重塑黄土强度与原状黄土强度具有相似的规律,表现为重塑黄土的剪切破裂面与压实面之间的夹角越大时,无侧限抗压强度越大,反之越小。重塑黄土不同角度取样后,试验所得的破裂面与压实面之间的关系见图3,同样表明θ=30°时,压实面与破裂面最接近,相应试样的无侧限抗压强度最小。同样地,重塑黄土的各向异性也是随着含水率的增加而逐渐减弱。
3. 黄土结构性的各向异性分析
谢定义、齐吉琳等总结了已有黄土结构性的研究成果,基于对原状黄土、重塑黄土、饱和原状黄土试样的压缩试验,从土力学的角度,提出了定量描述黄土结构性的指标——综合结构势[5]。之后,学者们在综合结构势的基础上提出了多种结构性参数,其中构度指标mu可反映土体的初始结构性[18],其表达式为
(2) 式中,quo、qur、qus分别为原状土、湿密状态相同的重塑土、饱和原状土的无侧限抗压强度。
根据试验所得的原状、重塑黄土的无侧限抗压强度,由式(2)计算得相应黄土的构度指标mu。图5给出了不同取样角度黄土的构度指标mu与含水率的关系,图6给出了构度指标mu与取样角度的关系。w>15%时减小的幅度较小。在含水率相同时,与无侧限抗压强度类似,构度指标mu也表现出在θ=30°时最小的规律,如图6所示。在含水率相同时,不同取样角度黄土的构度指标不同,说明黄土的结构性也具有各向异性。不过,随着含水率的增加,取样角度对黄土构度指标的影响越来越小,即黄土结构性的各向异性逐渐减弱,且含水率较小时各向异性减弱得较快;随着含水率的增加,构度指标mu越来越接近,说明随着含水率的增加,黄土原始结构逐渐破坏,黄土结构的各向异性在向着各向同性转化。
4. 结论
从图5可以得出:构度指标mu随含水率的增大而减小,且在含水率w<15%时减小的幅度较大,含水率
本文通过对原状、重塑黄土进行无侧限抗压强度试验,分析了其强度及结构性与取样角度的关系,主要得出以下结论:
(1)当含水率较低时原状黄土、重塑黄土的无侧限抗压强度各向异性较明显,构度指标mu的各向异性也较明显。
(2)当含水率一定时,破裂面与沉积面所成角度越大,原状、重塑黄土的无侧限抗压强度越大,结构性参数越大。取样角度θ=45°-φ/2时,强度最小。
(3)随着含水率的增大,原状黄土、重塑黄土的无侧限抗压强度逐渐减小,各向异性逐渐减弱。
不同方向黄土的强度与结构参数存在明显的差异,即黄土具有明显的各向异性,黄土的这一性质在边坡、隧洞及地下构筑物中显得尤为重要,因此此类工程施工时应有效防止地下水或地表水对黄土强度及结构性的影响,同时采用适当的断面形式,充分利用不同方向土体自身的强度与结构性,保证围岩的稳定性。
-
[1] 丁智, 张霄, 梁发云, 等. 软土基坑开挖对邻近既有隧道影响研究及展望[J]. 中国公路学报, 2021, 34(3): 50-70. DING Zhi, ZHANG Xiao, LIANG Fayun, et al. Research and prospects regarding the effect of foundation pit excavation on an adjacent existing tunnel in soft soil[J]. China Journal of Highway and Transport, 2021, 34(3): 50-70. (in Chinese)
[2] 陈湘生, 洪成雨, 苏栋. 智能岩土工程初探[J]. 岩土工程学报, 2022, 44(12): 2151-2159. doi: 10.11779/CJGE202212001 CHEN Xiangsheng, HONG Chengyu, SU Dong. Intelligent geotechnical engineering[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(12): 2151-2159. (in Chinese) doi: 10.11779/CJGE202212001
[3] 黎剑华, 张鸿, 刘优平, 等. 光纤Bragg光栅在公路软基沉降监测中的应用[J]. 中南大学学报(自然科学版), 2011, 42(5): 1442-1446. LI Jianhua, ZHANG Hong, LIU Youping, et al. Fiber Bragg grating monitoring technology applied in soft ground settlement of highway[J]. Journal of Central South University (Science and Technology), 2011, 42(5): 1442-1446. (in Chinese)
[4] 朱海琴, 胡玉婷, 毛学军, 等. 基于FBG传感技术的软基全断面沉降传感器研发[J]. 南昌工程学院学报, 2016, 35(4): 79-84. ZHU Haiqin, HU Yuting, MAO Xuejun, et al. Development of whole cross section settlement sensor for soft soil foundation based on FBG sensing technology[J]. Journal of Nanchang Institute of Technology, 2016, 35(4): 79-84. (in Chinese)
[5] 侯公羽, 李子祥, 胡涛, 等. 基于分布式光纤应变传感技术的隧道沉降监测研究[J]. 岩土力学, 2020, 41(9): 3148-3158. HOU Gongyu, LI Zixiang, HU Tao, et al. Study of tunnel settlement monitoring based on distributed optic fiber strain sensing technology[J]. Rock and Soil Mechanics, 2020, 41(9): 3148-3158. (in Chinese)
[6] 朱建军, 李志伟, 胡俊. InSAR变形监测方法与研究进展[J]. 测绘学报, 2017, 46(10): 1717-1733. ZHU Jianjun, LI Zhiwei, HU Jun. Research progress and methods of InSAR for deformation monitoring[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1717-1733. (in Chinese)
[7] WU Y, LIU C, ZHANG Q, et al. Bibliometric analysis of interferometric synthetic aperture radar (InSAR) application in land subsidence from 2000 to 2021[J]. Journal of Sensors, 2022, 2022: 1-15.
[8] WU S, ZHANG B, DING X, et al. Radar interferometry for urban infrastructure stability monitoring: from techniques to applications[J]. Sustainability, 2023, 15(19): 14654. doi: 10.3390/su151914654
[9] 邢学敏, 杨东, 张锐, 等. 基于雷达遥感对地观测技术的软土地区公路沉降监测方法[J]. 岩土工程学报, 2023, 45(10): 2172-2179. doi: 10.11779/CJGE20220813 XING Xuemin, YANG Dong, ZHANG Rui, et al. Monitoring method for subsidence of highways in soft soil areas based on radar remote sensing earth observation technique[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(10): 2172-2179. (in Chinese) doi: 10.11779/CJGE20220813
[10] 赵超英, 刘晓杰, 张勤, 等. 甘肃黑方台黄土滑坡InSAR识别、监测与失稳模式研究[J]. 武汉大学学报(信息科学版), 2019, 44(7): 996-1007. ZHAO Chaoying, LIU Xiaojie, ZHANG Qin, et al. Study on InSAR recognition, monitoring and instability model of Heifangtai loess landslide in Gansu Province[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 996-1007. (in Chinese)
[11] 孙懋珩, 王欣. 基于双目视觉的基坑位移监测方案[J]. 计算机工程与设计, 2015, 36(1): 273-276. SUN Maoheng, WANG Xin. Excavation displacement monitoring scheme based on binocular vision[J]. Computer Engineering and Design, 2015, 36(1): 273-276. (in Chinese)
[12] 李丽萍, 郑晅. 基于双目立体视觉的隧道围岩形变监测系统[J]. 物联网技术, 2021, 11(3): 22-23. LI Liping, ZHENG Xuan. Tunnel surrounding rock deformation monitoring system based on binocular stereo vision[J]. Internet of Things Technologies, 2021, 11(3): 22-23. (in Chinese)
[13] HE L, TAN J, HU Q, et al. Non-contact measurement of the surface displacement of a slope based on a smart binocular vision system[J]. Sensors (Basel), 2018, 18(9): E2890. doi: 10.3390/s18092890
[14] HU Q, FENG Z, HE L, et al. Accuracy improvement of binocular vision measurement system for slope deformation monitoring[J]. Sensors, 2020, 20(7): 1994. doi: 10.3390/s20071994
[15] 郑健龙, 周驰晴, 张军辉. 双层地基一维固结特性研究综述[J]. 长沙理工大学学报(自然科学版), 2012, 9(1): 1-11. ZHENG Jianlong, ZHOU Chiqing, ZHANG Junhui. Summary of 1-D consolidation characteristics of double-layered ground[J]. Journal of Changsha University of Science & Technology (Natural Science), 2012, 9(1): 1-11. (in Chinese)
[16] 张冲, 刘钢, 赵明志, 等. 成宜高速某浅层软土上路堤填筑的稳定性分析[J]. 中外公路, 2021, 41(2): 19-25. ZHANG Chong, LIU Gang, ZHAO Mingzhi, et al. Stability analysis of embankment filling on a shallow soft soil of Chengyi Expressway[J]. Journal of China & Foreign Highway, 2021, 41(2): 19-25. (in Chinese)
[17] ABIODUN O I, JANTAN A, OMOLARA A E, et al. Comprehensive review of artificial neural network applications to pattern recognition[J]. IEEE ACCESS, 2019, 7: 158820-158846. doi: 10.1109/ACCESS.2019.2945545
[18] ZHANG Q, ZHU Y, MA R, et al. Prediction method of TBM tunneling parameters based on PSO-BI-LSTM model[J]. Frontiers in Earth Science, 2022, 10: 854807. doi: 10.3389/feart.2022.854807
[19] 潘秋景, 吴洪涛, 张子龙, 等. 基于多域物理信息神经网络的复合地层隧道掘进地表沉降预测[J]. 岩土力学, 2024, 45(2): 539-551. PAN Qiujing, WU Hongtao, ZHANG Zilong, et al. Prediction of tunneling-induced ground surface settlement within composite strata using multi-physics- informed neural network[J]. Rock and Soil Mechanics, 2024, 45(2): 539-551. (in Chinese)
[20] 周中, 张俊杰, 丁昊晖, 等. 基于GA-Bi-LSTM的盾构隧道下穿既有隧道沉降预测模型[J]. 岩石力学与工程学报, 2023, 42(1): 224-234. ZHOU Zhong, ZHANG Junjie, DING Haohui, et al. Settlement prediction model of shield tunnel under-crossing existing tunnel based on GA-Bi-LSTM[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(1): 224-234. (in Chinese)
[21] 林东, 郑俊杰, 薛鹏鹏, 等. 基于贝叶斯方法的软土深基坑不确定性位移反演分析[J]. 土木与环境工程学报(中英文), 2024, 46(3): 52-60. LIN Dong, ZHENG Junjie, XUE Pengpeng, et al. Probabilistic method for displacement back analysis of deep excavations in soft soil based on Bayesian method[J]. Journal of Civil and Environmental Engineering, 2024, 46(3): 52-60. (in Chinese)
[22] 王长虹, 吴昭欣, 王昆, 等. CPTU数据校准上海深层软土参数的随机力学-贝叶斯方法[J]. 岩土工程学报, 2023, 45(1): 75-84. doi: 10.11779/CJGE20211494 WANG Changhong, WU Zhaoxin, WANG Kun, et al. Stochastic mechanics-based Bayesian method for calibrating geotechnical parameters of Shanghai deep soft clay using CPTU data[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(1): 75-84. (in Chinese) doi: 10.11779/CJGE20211494
[23] VARDAKOS S, GUTIERREZ M, XIA C C. Parameter identification in numerical modeling of tunneling using the differential evolution genetic algorithm (DEGA)[J]. Tunnelling and Underground Space Technology, 2012, 28: 109-123.
[24] 戴斌, 胡耘, 王惠生. 上海地区相邻基坑同步开挖影响分析与实践[J]. 岩土工程学报, 2021, 43(增刊2): 129-132. doi: 10.11779/CJGE2021S2031 DAI Bin, HU Yun, WANG Huisheng. Analysis and practice of influence of synchronous excavation of adjacent foundation pits in Shanghai Area[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 129-132. (in Chinese) doi: 10.11779/CJGE2021S2031
[25] 唐洪祥, 崔家铭, 张雪, 等. 岩土体大变形分析的Cosserat-粒子有限元法[J]. 岩土工程学报, 2023, 45(3): 495-502. doi: 10.11779/CJGE20211244 TANG Hongxiang, CUI Jiaming, ZHANG Xue, et al. Cosserat-particle finite element method for large deformation analysis of rock and soil[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 495-502. (in Chinese) doi: 10.11779/CJGE20211244
[26] 王辉, 陈卫忠, 陈培帅, 等. 浅埋大跨小净距隧道断面形态及合理间距的优化研究[J]. 岩土力学, 2011, 32(增刊2): 641-646. WANG Hui, CHEN Weizhong, CHEN Peishuai, et al. Study of section morphology and reasonable distance optimization of large-span twin tunnels with small clear spacing in shallow rock mass[J]. Rock and Soil Mechanics, 2011, 32(S2): 641-646. (in Chinese)
[27] TAO F, MA X, HU T, et al. Research on digital twin standard system[J]. Computer Intergraded Manufacturing Systems, 2019, 25(10), 2405–2418.
[28] GRIEVES M, VICKERS J. Digital Twin: Mitigating Unpredictable, Undesirable Emergent Behavior in Complex Systems[M]. Cham: Springer International Publishing, 2017.
[29] CHENG X, WANG C, LIANG F Y, et al. A preliminary investigation on enabling digital twin technology for operations and maintenance of urban underground infrastructure[J]. AI in Civil Engineering, 2024, 3(1): 4.
[30] 陈健, 盛谦, 陈国良, 等. 岩土工程数字孪生技术研究进展[J]. 华中科技大学学报(自然科学版), 2022, 50(8): 79-88. CHEN Jian, SHENG Qian, CHEN Guoliang, et al. Research progress in digital twin technology for geotechnical engineering[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2022, 50(8): 79-88. (in Chinese)
[31] 何满潮. 滑坡地质灾害远程监测预报系统及其工程应用[J]. 岩石力学与工程学报, 2009, 28(6): 1081-1090. HE Manchao. Real-time remote monitoring and forecasting system for geological disasters of landslides and its engineering application[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(6): 1081-1090. (in Chinese)
[32] 张斌, 冯其波, 杨婧, 等. 路基沉降远程自动监测系统的研发[J]. 中国铁道科学, 2012, 33(1): 139-144. ZHANG Bin, FENG Qibo, YANG Jing, et al. Development of remote automatic monitoring system for subgrade settlement[J]. China Railway Science, 2012, 33(1): 139-144. (in Chinese)
[33] 邬凯, 盛谦, 张勇慧, 等. 山区公路路基边坡地质灾害远程监测预报系统开发及应用[J]. 岩土力学, 2010, 31(11): 3683-3687. WU Kai, SHENG Qian, ZHANG Yonghui, et al. Development of real-time remote monitoring and forecasting system for geological disasters at subgrade slopes of mountainous highways and its application[J]. Rock and Soil Mechanics, 2010, 31(11): 3683-3687. (in Chinese)
-
期刊类型引用(1)
1. 李俊勇,钱道庆,杨金宇. 基于数字孪生的智慧城市基础设施建设方法及工程应用. 建筑技术. 2025(06): 687-691 . 百度学术
其他类型引用(0)