• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

循环荷载作用下粉质黏土-混凝土界面强度预测研究

杨俊超, 夏元友, 崔飞龙, 李丽华, 吴炯晖, 陈晨, 田亮

杨俊超, 夏元友, 崔飞龙, 李丽华, 吴炯晖, 陈晨, 田亮. 循环荷载作用下粉质黏土-混凝土界面强度预测研究[J]. 岩土工程学报, 2024, 46(S2): 194-199. DOI: 10.11779/CJGE2024S20037
引用本文: 杨俊超, 夏元友, 崔飞龙, 李丽华, 吴炯晖, 陈晨, 田亮. 循环荷载作用下粉质黏土-混凝土界面强度预测研究[J]. 岩土工程学报, 2024, 46(S2): 194-199. DOI: 10.11779/CJGE2024S20037
YANG Junchao, XIA Yuanyou, CUI Feilong, LI Lihua, WU Jionghui, CHEN Chen, TIAN Liang. Prediction of strength of silty clay-concrete interface under cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S2): 194-199. DOI: 10.11779/CJGE2024S20037
Citation: YANG Junchao, XIA Yuanyou, CUI Feilong, LI Lihua, WU Jionghui, CHEN Chen, TIAN Liang. Prediction of strength of silty clay-concrete interface under cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S2): 194-199. DOI: 10.11779/CJGE2024S20037

循环荷载作用下粉质黏土-混凝土界面强度预测研究  English Version

基金项目: 

国家自然科学基金面上项目 52278369

中铁建设集团有限公司科技研究开发计划项目 23-46c

广州市建筑集团有限公司科技计划项目 2024-KJ080

详细信息
    作者简介:

    杨俊超(1990—),男,博士研究生,主要从事桩基础、岩土和结构加固设计等方面的研究工作。E-mail: yjcresearch@163.com

    通讯作者:

    夏元友, E-mail: xiayy1965@126.com

  • 中图分类号: TU44

Prediction of strength of silty clay-concrete interface under cyclic loading

  • 摘要: 基于3D扫描和打印技术,制作了与混凝土灌注桩相同的界面混凝土试件,并进行了一系列粉质黏土-混凝土界面循环剪切试验。通过粉质黏土-混凝土界面循环剪切试验,揭示不同循环周期、循环幅值条件下界面强度的衰减规律。通过对循环幅值和法向压力幂函数拟合,对循环稳定后-土界面强度衰减系数进行表征,并结合黏土-混凝土界面峰值强度模型,提出粉质黏土-混凝土界面强度衰减模型。结果表明:在15次循环后,部分循环的剪切位移-剪切应力曲线近似重合;当循环幅值逐渐增大,剪切阶段与卸载阶段应力-应变曲线均呈现线性趋势,每个循环圈内加载与卸载的斜率基本保持一致,类似“平行四边形”;不同工况的循环稳定后界面剪切峰值强度折减系数Dτ存在相同的变化趋势,可通过循环幅值A和法向应力σ的无量纲非线性回归分析,提出循环稳定后黏土-混凝土界面剪切峰值强度折减系数Dτ表征方法,其拟合度较高。
    Abstract: Based on the 3D scanning and printing technology, the concrete specimens with the same contact surface as the concrete cast-in-place piles are produced, and a series of silty clay-concrete interface cyclic shear tests are conducted. Through the cyclic shear tests on the silty clay-concrete interface, the attenuation laws of interface strength under different cyclic periods and cyclic amplitudes are revealed. By fitting the cyclic amplitude and normal pressure power function, the strength attenuation coefficient of the concrete-soil interface after cyclic stabilization is characterized, and by combining with the peak strength model for the clay-concrete interface, the strength attenuation model for the silty clay-concrete interface is proposed. The results show that the shear displacement-shear stress curves of some cycles coincide approximately after 15 cycles. When the cyclic amplitude increases gradually, the stress-strain curves at the shear stage and unloading stage show a linear trend, and the slopes of loading and unloading in each cycle are basically consistent, similar to "parallelogram". The reduction coefficient Dτ of the peak interfacial shear strength after cyclic stabilization has the same variation trend under different working conditions. A dimensionless nonlinear regression analysis of cyclic amplitude A and normal stress σ can be used to obtain the reduction coefficient Dτ of the peak interfacial shear strength after cyclic stabilization, which has a high degree of fitting.
  • 图  1   大型直剪试验装置详图

    Figure  1.   Setup of large-scale direct shear tests

    图  2   混凝土试块制作

    Figure  2.   Collection and production of structural surface of concrete

    图  3   循环剪切滞回曲线

    Figure  3.   Curves of shear displacemetn and shear stress under different cyclic amplitudes

    图  4   不同循环幅值下循环圈弱化系数与循环次数关系

    Figure  4.   Relationship between weakening coefficient and number of cycles under different cycle amplitudes

    图  5   循环稳定后峰值强度衰减系数Dτ

    Figure  5.   Failure mechanism of rough interface

    图  6   黏土-混凝土界面强度预测值与实测值对比

    Figure  6.   Comparison between predicted and measured strengths of clay-concrete interface

    表  1   粉质黏土物理力学性质

    Table  1   Basic physical and mechanical properties of silty clay

    物理力学性能指标 数值
    干重度/(kN·m-3) 15.8
    含水率/% 32
    最优含水率/% 13
    液限/% 37
    塑限/% 20
    孔隙比 0.82
    黏聚力/kPa 44.3
    内摩擦角/(°) 15.9
    下载: 导出CSV
  • [1]

    CHEN X, ZHANG J, XIAO Y. et al. Effect of roughness on shear behavior of red clay-concrete interface in large-scale direct shear tests[J]. Canadian Geotechnical Journal, 2015, 52(8): 1122-1135. doi: 10.1139/cgj-2014-0399

    [2]

    YANG W D, WANG Y N, WANG L, et al. Time-dependent behaviour of clay-concrete interfaces with different contact surface roughnesses under shear loading[J]. Mechanics of Time-Dependent Materials, 2021, 25(4): 539-564. doi: 10.1007/s11043-020-09459-9

    [3] 苏新斌, 廖晨聪, 刘世奥, 等. 基于预制滑动面的饱和黏土-结构物界面强度特性三轴试验研究[J]. 岩土力学, 2022, 43(10): 2852-2860.

    SU Xinbin, LIAO Chencong, LIU Shiao, et al. Triaxial test for strength characteristics of saturated clay-structure interface based on prefabricated sliding surface[J]. Rock and Soil Mechanics, 2022, 43(10): 2852-2860. (in Chinese)

    [4] 王钰轲, 李朕宇, 钟燕辉, 等. 渗透型高聚物与过江盾构隧道接缝混凝土界面特性[J]. 岩土工程学报, 2023, 45(增刊2): 195-200. doi: 10.11779/CJGE2023S20027

    WANG Yuke, LI Zhenyu, ZHONG Yanhui, et al. Interfacial behavior of permeable polymer and concrete at joints of cross-river shield tunnels[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S2): 195-200. (in Chinese) doi: 10.11779/CJGE2023S20027

    [5]

    YANG J C, XIA Y Y, CHEN W D, et al. The shear behavior of silty clay-concrete interface based on large-scale direct shear test[J]. International Journal of Geomechanics, 2023, 7(23): 04023084.

    [6] 成浩, 陈晓斌, 张家生, 等. 红黏土-混凝土结构接触面残余强度特性试验研究[J]. 中南大学学报(自然科学版), 2017, 48(9): 2458-2464.

    CHENG Hao, CHEN Xiaobin, ZHANG Jiasheng, et al. Experimental research on residual shear strength of red clay-concrete structure interface[J]. Journal of Central South University (Science and Technology), 2017, 48(9): 2458-2464. (in Chinese)

    [7]

    MAGHSOODi S, CUISINIER O, MASROURI F. Effect of temperature on the cyclic behavior of clay-structure interface[J]. J Geotech Geoenviron Eng, 2020, 146(10): 04020103. doi: 10.1061/(ASCE)GT.1943-5606.0002360

    [8] 何鹏飞, 马巍, 穆彦虎, 等. 冻融循环对冻土-混凝土界面冻结强度影响的试验研究[J]. 岩土工程学报, 2020, 42(2): 299-307. doi: 10.11779/CJGE202002011

    HE Pengfei, MA Wei, MU Yanhu, et al. Experiment study on effects of freeze-thaw cycles on adfreezing strength at frozen soil-concrete interface[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 299-307. (in Chinese) doi: 10.11779/CJGE202002011

    [9] 刘飞禹, 朱晨, 王军. 剪切速率和法向加载频率对筋土界面剪切特性的影响[J]. 岩土工程学报, 2021, 43(5): 832-840. doi: 10.11779/CJGE202105006

    LIU Feiyu, ZHU Chen, WANG Jun. Influences of shear rate and loading frequency on shear behavior of geogrid-soil interfaces[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(5): 832-840. (in Chinese) doi: 10.11779/CJGE202105006

    [10]

    DESAI C S, DRUMM E. Cyclic testing and modeling of interfaces[J]. Journal of Geotechnical Engineering, 1985, 6(111): 793-815.

    [11]

    DESAI C S, PRADHAN S K and COHEN D. Cyclic testing and constitutive modeling of saturated sand-concrete interfaces using the disturbed state concept[J]. Int J Geomech, 2005, 5(4): 286-294. doi: 10.1061/(ASCE)1532-3641(2005)5:4(286)

    [12]

    HU L, PU J. Testing and modeling of soil-structure interface[J]. J Geotech Geoenviron Eng, 2004, 130(8): 851-860. doi: 10.1061/(ASCE)1090-0241(2004)130:8(851)

    [13]

    LIU H, SONG E and LING H L. Constitutive modeling of soilstructure interface through the concept of critical state soil mechanics[J]. Mech Res Commun, 2006, 33(4): 515-531. doi: 10.1016/j.mechrescom.2006.01.002

    [14] 土工合成材料测试规程: SL 235—2012[S]. 北京: 中国水利水电出版社, 2012.

    Specification for Test and Measurement of Geosynthetics: SL 235—2012[S]. Beijing: China Water & Power Press, 2012. (in Chinese)

    [15] 赵志方, 赵国藩. 采用高压水射法处理新老混凝土黏结面的试验研究[J]. 大连理工大学学报, 1999, 39(4): 96-99.

    ZHAO Zhifang, ZHAO Guofan. Experimental research on treating interface of young on old concrete with high pressure water jet method[J]. Dalian Univ Technol, 1999, 39(4): 96-99. (in Chinese)

    [16]

    TATONE B S A, GRASSELLI G. A method to evaluate the three-dimensional roughness of fracture surfaces in brittle geomaterials[J]. Rev Sci Instrum, 2009, 80(12): 181-106.

    [17]

    MORTARA G, BOULON M, GHIONNA V N. A 2-D constitutive model for cyclic interface behaviour[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2002, 26(11): 1071-1096. doi: 10.1002/nag.236

    [18]

    POULOS H G. Cyclic axial loading analysis of piles in sand: [J]. Journal of Geotechnical Engineering Division, 1989, 6(115): 836-852.

    [19] 刘蓓. 红黏土与混凝土结构界面力学特性的试验研究[D]. 长沙: 中南大学, 2013.

    LIU Bei. The Text Study on Mechanical Properties of Interface between Red Clay and Concrete Structure[D]. Changsha: Central South University, 2013. (in Chinese)

图(6)  /  表(1)
计量
  • 文章访问数:  80
  • HTML全文浏览量:  5
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-20
  • 刊出日期:  2024-09-30

目录

    /

    返回文章
    返回