Sorption properties of polymer-modified bentonite to Pb(Ⅱ) ions
-
摘要: 为研究聚合物改性膨润土(简称PMB)对重金属的吸附特性,开展了Batch吸附试验,利用4种吸附动力学模型(准一阶动力学、准二阶动力学、颗粒内扩散和Elovich模型)和4种等温吸附模型(Langmuir、Freundlich、D-R和Temkin模型)研究了钠化钙基膨润土(简称NCB)和PMB对Pb(Ⅱ)离子的吸附行为,并通过BET(Brunauer- Emmett-Teller)试验对膨润土进行了比表面积和孔径分析。结果表明,当溶液pH值为1(强酸)时,PMB对Pb(Ⅱ)离子的吸附率为60%,较NCB提高了33%。膨润土对Pb(Ⅱ)离子的吸附动力学更符合准二阶模型,PMB在初始5 min内可快速吸附Pb(Ⅱ)离子,吸附率达50%。Langmuir吸附等温模型更好地描述了两种膨润土对Pb(Ⅱ)离子的吸附特性,计算所得最大吸附量与试验结果接近。Abstract: To investigate the heavy metal sorption properties of the polymer-modified bentonite (PMB), the batch sorption tests are conducted. The sorption behaviors of the sodium activated calcium-bentonite (NCB) and PMB to Pb(Ⅱ) ions are investigated using four sorption kinetic models (i.e., pseudo-first-order, pseudo-second-order, intra-particle diffusion, and Elovich models) and four isothermal sorption models (i.e., Langmuir, Freundlich, D-R, and Temkin models). Additionally, the specific surface area and pore size distribution of the bentonites are analyzed the through BET (Brunauer-Emmett-Teller) tests. The results indicate that at solution pH = 1 (strong acidity), the sorption efficiency of the PMB to Pb(Ⅱ) ions is 60%, with an improvement of 33% over the NCB. The sorption kinetics of bentonites to Pb(Ⅱ) ions conformes more closely to the pseudo-second-order model, with the PMB rapidly adsorbing Pb(Ⅱ) ions within the first 5 minutes, achieving the sorption rate of 50%. The Langmuir sorption isotherm model provides a better description of the sorption characteristics of both bentonites to Pb(Ⅱ) ions, and the calculated maximum sorption capacity closely matches the testing results.
-
Keywords:
- bentonite /
- polymer modification /
- sorption property /
- Pb(Ⅱ) ion
-
-
表 1 Pb(Ⅱ)离子在膨润土中的吸附动力学参数
Table 1 Kinetic parameters for Pb(Ⅱ) sorption on bentonite
吸附动力学参数 钠化钙基膨润土NCB 聚合物改性膨润土PMB 准一阶模型 qe, cal/(mg·g-1) 94.370 105.72 K1/ min-1 0.1299 0.5702 R2 0.8100 0.4000 0.7231 0.1665 准二阶模型 qe, cal/(mg·g-1) 105.26 109.89 K2/((g·mg-1)·min-1) 0.0013 0.0043 R2 0.9996 0.9999 0.0496 0.0001 颗粒内扩散模型 Kp1/ ((mg·g-1)·min-1/2) 13.426 1.6778 c1 22.029 96.413 R12 0.8838 0.9834 Kp2/ ((mg·g-1)·min-1/2) 2.3715 0.4272 c2 69.031 101.62 R22 0.8917 0.9380 Elovich模型 α/((mg·g-1)·min-1) 365.10 5.6211×1020 β/(g·mg-1) 0.0876 0.4856 R2 0.9004 0.9747 表 2 膨润土对Pb(Ⅱ)离子的吸附等温模型参数
Table 2 Predicted isothermal parameters for Pb(Ⅱ) sorption on bentonite
模型 参数 钠化钙基膨润土NCB 聚合物改性膨润土PMB Langmuir模型 qm, cal/(mg·g-1) 103.09 112.36 KL/(L·mg-1) 0.0345 0.0090 R2 0.9998 0.9989 0.0432 0.2685 Freundlich模型 KF/(L·g-1) 4.6520 1.9889 nF 2.1124 1.6875 R2 0.8655 0.9026 D-R模型 qm, cal/(mg·g-1) 311.34 401.57 KD-R/ (mol2·kJ-2) 0.0046 0.0061 E/(kJ·mol-1) -10.426 -9.054 R2 0.9379 0.9592 438.05 810.95 Temkin模型 KT/(L·g-1) 1.0891 0.2771 bT/(J·mol-1) 172.09 139.56 R2 0.9516 0.9423 表 3 膨润土试样的微观表面特性
Table 3 Comparison of surface characteristics of bentonites
表面特性 具体参数 钠化钙基膨润土NCB 聚合物改性膨润土PMB 比表面积/(m2·g-1) 单点BET比表面积 57.31 4.14 多点BET比表面积 57.67 4.22 Langmuir比表面积 88.31 6.52 孔隙体积/ (cm3·g-1) 总孔体积 0.129 0.022 BJH吸附孔体积 0.127 0.022 BJH脱附孔体积 0.131 0.022 孔径/nm 平均孔直径 8.97 20.98 BJH吸附平均孔直径 10.00 21.30 BJH脱附平均孔直径 8.14 18.18 -
[1] 中华人民共和国生态环境部. 全国土壤污染调查公报[R]. 北京: 中华人民共和国生态环境部. 2020. Ministry of Ecology and Environment of the People's Republic of China (MEE), 2019 Bulletin of the State of the Environment in China[R]. Beijing: MEE, 2020. (in Chinese)
[2] 何顺辉, 谢世平, 张健. GCL对铜离子吸附和隔离性能试验研究[J]. 岩土工程学报, 2016, 38(增刊1): 79-82. doi: 10.11779/CJGE2016S1014 HE Shunhui, XIE Shiping, ZHANG Jian. Experimental study on adsorption and isolation performance of GCL for copper ions[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(S1): 79-82. (in Chinese) doi: 10.11779/CJGE2016S1014
[3] 范日东, 刘松玉, 杜延军. 基于改进滤失试验的重金属污染膨润土渗透特性试验研究[J]. 岩土力学, 2019, 40(8): 2989-2996. FAN Ridong, LIU Songyu, DU Yanjun. Modified fluid loss test for measuring the hydraulic conductivity of heavy metal-contaminated bentonites[J]. Rock and Soil Mechanics, 2019, 40(8): 2989-2996. (in Chinese)
[4] SCALIA IV J. Bentonite-polymer Composites for containment Applications[D]. Madison: The University of Wisconsin- Madison, 2012.
[5] SCALIA J IV, BENSON C H, BOHNHOFF G L, et al. Long-term hydraulic conductivity of a bentonite-polymer composite permeated with aggressive inorganic solutions[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(3): 04013025. doi: 10.1061/(ASCE)GT.1943-5606.0001040
[6] 陈晓雄. 聚合物改性膨润土基阻隔材料的污染物迁移特性研究[D]. 武汉: 华中科技大学, 2021. CHEN Xiaoxiong. Investigation of Contaminant Transport Properties of Polymer-modified Bentonite Barrier Material[D]. Wuhan: Huazhong University of Science and Technology, 2021. (in Chinese)
[7] 代展鸿. 聚合物改性膨润土基竖向阻隔墙材料工程特性研究[D]. 武汉: 华中科技大学, 2021. DAI Zhanhong. Investigation of Engineering Properties of Vertical Cutoff Wall Material Based on Soil-modified Bentonite[D]. Wuhan: Huazhong University of Science and Technology, 2021. (in Chinese)
[8] WANG H, JIANG L S, ZHANG C R, et al. Ca-bentonite/ polymer nanocomposite geosynthetic clay liners for effective containment of hazardous landfill leachate[J]. Journal of Cleaner Production, 2022, 365: 132825. doi: 10.1016/j.jclepro.2022.132825
[9] 周守勇, 薛爱莲, 张艳, 等. 聚丙烯酸改性凹土对Pb2+、Ni2+和Cr3+的选择性吸附[J]. 化工学报, 2015, 66(2): 618-625. ZHOU Shouyong, XUE Ailian, ZHANG Yan, et al. Selective adsorption of Pb2+, Ni2+ and Cr3+ by polyacrylic acid/attapulgite composite adsorbents[J]. CIESC Journal, 2015, 66(2): 618-625. (in Chinese)
[10] EL-KORASHY S A, ELWAKEEL K Z, EL-HAFEIZ A A. Fabrication of bentonite/thiourea-formaldehyde composite material for Pb(Ⅱ), Mn(Ⅶ) and Cr(Ⅵ) sorption: a combined basic study and industrial application[J]. Journal of Cleaner Production, 2016, 137: 40-50. doi: 10.1016/j.jclepro.2016.07.073
[11] 张金利, 张林林, 谷鑫. 重金属Pb(Ⅱ)在膨润土上去除特性研究[J]. 岩土工程学报, 2013, 35(1): 117-123. http://cge.nhri.cn/article/id/14911 ZHANG Jinli, ZHANG Linlin, GU Xin. Removal behaviors of heavy metal Pb(Ⅱ) by use of bentonite[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(1): 117-123. (in Chinese) http://cge.nhri.cn/article/id/14911
[12] SRIVASTAVA V, WENG C H, SINGH V K, et al. Adsorption of nickel ions from aqueous solutions by nano alumina: kinetic, mass transfer, and equilibrium studies[J]. Journal of Chemical & Engineering Data, 2011, 56(4): 1414-1422.
[13] LIMOUSIN G, GAUDET J P, CHARLET L, et al. Sorption isotherms: a review on physical bases, modeling and measurement[J]. Applied Geochemistry, 2007, 22(2): 249-275. doi: 10.1016/j.apgeochem.2006.09.010
[14] QI L F, XU Z R. Lead sorption from aqueous solutions on chitosan nanoparticles[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 251(1/2/3): 183-190.
[15] WANG S, DONG Y, HE M, et al. Characterization of GMZ bentonite and its application in the adsorption of Pb(Ⅱ) from aqueous solutions[J]. Applied Clay Science, 2009, 43(2): 164-171. doi: 10.1016/j.clay.2008.07.028
[16] DADA A O, OLALEKAN A P, OLATUNYA A M, et al. Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk[J]. Journal of Applied Chemistry, 2012, 3(1): 38-45.
[17] 冯江涛, 王桢钰, 闫炫冶, 等. 吸附去除水体重金属离子的影响因素研究进展[J]. 西安交通大学学报, 2022, 56(2): 1-16. FENG Jiangtao, WANG Zhenyu, YAN Xuanye, et al. A review on factors influencing heavy metal ion removal by adsorption from water[J]. Journal of Xi'an Jiaotong University, 2022, 56(2): 1-16. (in Chinese)