Stratum disturbance induced by shield tunnels based on random field theory
-
摘要: 盾构开挖不可避免会造成周围地层扰动,引起地表及深部地层发生变形,变形过大时会威胁到周围建构(筑)物的安全,因而有必要开展隧道施工地表及地层变形扰动方面的研究。首先在土体均质条件下,开展二维数值计算,并分别利用Peck公式拟合优度和多项式拟合优度来评价水平向地层和竖向地层的变形扰动程度;继而考虑土体参数空间变异性,借助Monte Carlo策略,开展盾构施工对地层扰动规律影响研究的随机性分析。研究结果表明:Peck公式拟合优度可以较好地反映施工引起水平地层沉降变形程度;多项式拟合优度可以较好地反映竖向地层水平变形受到施工的影响程度;土体模量空间变异性会对盾构隧道施工地层扰动产生较大的影响,模量较大时会对盾构施工地层扰动有一定的“抑制”作用,但总体上越靠近盾构隧道,地层受到扰动越大。研究可以为类似工程的设计和施工提供有益的参考。Abstract: The shield tunnel will inevitably cause the disturbance of the surrounding stratum and lead to the deformation of the surface and deep strata. Too large deformation of the surface and strata will threaten the safety of the surrounding construction. Therefore, it is necessary to carry out the studies on the disturbance of the surface and strata in tunnel construction. Firstly, under homogeneous soil conditions, two-dimensional numerical calculation is conducted, and the goodnesses of fit of the Peck's formula and polynomials are used to evaluate the degree of deformation disturbance of the horizontal and vertical strata, respectively. Then, considering the spatial variability of soil parameters, within the Monte Carlo framework, the random analysis is performed for the influences of shield construction on stratum disturbance. The results show that the goodness of fit of the Peck's formula can well reflect the degree of settlement of the horizontal strata induced by tunnels. The goodness of fit of the polynomials can well reflect the degree of horizontal deformation of the vertical strata affected by the construction. The spatial variability of soil modulus has a great impact on the stratum disturbance induced by the shield tunnel, and the larger modulus will restrain the disturbance induced by the shield tunnel, but on the whole, the greater stratum disturbance will occur when it is closer to the shield tunnel. The results can provide a useful reference for the design and construction of similar projects.
-
Keywords:
- shield tunnel /
- deep stratum /
- deformation and disturbance /
- goodness of fit /
- spatial variability /
- random field
-
-
表 1 土体及管片物理力学参数
Table 1 Parameters of soils and segments
材料 密度/(kg·m-3) 弹性模量/MPa 内摩擦角/(°) 黏聚力/kPa 泊松比 土体 1800 24.0 20 13.0 0.35 管片 2450 24.44×103 — — 0.20 表 2 地层竖向变形曲线回归分析
Table 2 Regression analysis of vertical deformation curves
多项式回归分析 竖向地层a 竖向地层b 竖向地层c 竖向地层d 三次多项式 0.9801 0.9577 0.8904 0.8520 四次多项式 0.9812 0.9778 0.9556 0.8805 五次多项式 0.9971 0.9922 0.9659 0.8805 六次多项式 0.9998 0.9989 0.9860 0.8951 七次多项式 0.9999 0.9990 0.9862 0.8951 -
[1] 彭沉彬, 郭郅威, 姜瑜, 等. 高压富水砂层超大直径盾构隧道下穿既有地铁影响分析和控制措施[J]. 铁道建筑, 2022, 62(2): 127-130. PENG Chenbin, GUO Zhiwei, JIANG Yu, et al. Influence analysis and control measures of super-large diameter shield tunnel under high pressure and water-rich sand stratum underpass existing subway[J]. Railway Engineering, 2022, 62(2): 127-130. (in Chinese)
[2] 赵宗智, 孙建平, 崔明, 等. 考虑盾构隧道轴线倾角的施工地表变形评价[J]. 隧道建设(中英文), 2021, 41(增刊1): 46-53. ZHAO Zongzhi, SUN Jianping, CUI Ming, et al. Evaluation of construction surface deformation considering axis inclination angle of shield tunnel[J]. Tunnel Construction, 2021, 41(S1): 46-53. (in Chinese)
[3] PECK R B. Deep excavation and tunneling in soft ground[C]// Proceeding of the 7th International Conference on Soil Mechanics and Foundation Engineering. Mexico City, 1969: 255-290.
[4] VANMARCKE E H. Probabilistic modeling of soil profiles[J]. Journal of the Geotechnical Engineering Division, 1977, 103(11): 1227-1246. doi: 10.1061/AJGEB6.0000517
[5] 易顺, 岳克栋, 陈健, 等. 考虑抗剪强度空间变异性的双层黏土边坡风险分析[J]. 岩土工程学报, 2021, 43(增刊2): 112-116. doi: 10.11779/CJGE2021S2027 YI Shun, YUE Kedong, CHEN Jian, et al. Risk analysis of double-layer clay slope considering spatial variability of shear strength[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 112-116. (in Chinese) doi: 10.11779/CJGE2021S2027
[6] 程红战, 陈健, 李健斌, 等. 基于随机场理论的盾构隧道地表变形分析[J]. 岩石力学与工程学报, 2016, 35(增刊2): 4256-4264. CHENG Hongzhan, CHEN Jian, LI Jianbin, et al. Surface deformation analysis of shield tunnel based on random field theory[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(S2): 4256-4264. (in Chinese)
[7] DAVIS M W. Production of conditional simulations via the LU triangular decomposition of the covariance matrix[J]. Mathematical Geology, 1987, 19(2): 91-98. doi: 10.1007/BF00898189
[8] 王润钰, 易顺, 黄珏皓. 基于最小二乘法的隧道地表沉降拟合研究[J]. 科技和产业, 2022, 22(4): 389-393. WANG Runyu, YI Shun, HUANG Juehao. Study on surface settlement induced by tunnel based on least square method[J]. Science Technology and Industry, 2022, 22(4): 389-393. (in Chinese)
[9] PHOON K K, KULHAWY F H. Characterization of geotechnical variability[J]. Canadian Geotechnical Journal, 1999, 36(4): 612-624.
[10] EL-RAMLY H, MORGENSTERN N R, CRUDEN D M. Probabilistic stability analysis of a tailings dyke on presheared clay shale[J]. Canadian Geotechnical Journal, 2003, 40(1): 192-208.