Characterization of uncertainty in shield tunneling excavated in soft soils based on gap parameter
-
摘要: 为防御软土盾构隧道施工引发过大地层位移的风险,有必要对盾构隧道地层位移进行概率分析。间隙参数法通过将地层损失分为三个分量,详尽地解释了盾构隧道掘进过程中地层损失的来源,基于间隙参数法对盾构隧道掘进过程中众多参数不确定性进行表征,为实现概率分析提供重要前提。基本思路为分别确定三个分量,即等效三维间隙、盾构姿态相关间隙与物理间隙的统计特征。等效三维间隙与盾构姿态相关间隙相对复杂,根据文献给出了与之相关的地层参数与掘进参数的统计特征。物理间隙与注浆效果有直接关系,通过搜集到的地质雷达数据确定注浆填充率,给出了物理间隙的统计特征。Abstract: To prevent the risk of displacement induced by shield tunneling, it is necessary to conduct probabilistic analysis. Gap parameter explains the source of ground loss in detail by dividing the ground loss into three parts. Based on it, the uncertainty of many parameters in the shield tunneling process is characterized, which provides an important prerequisite for probability analysis. The main idea is to obtain the statistics of three components of the gap parameter: three-dimensional equivalent gap u*3D, gap due to workmanship ω and physical gap g. The three-dimensional equivalent gap u*3D and the gap due to workmanship ω are relatively complicated, and the statistics of the relevant geological and tunneling parameters are given according to the literatures. The physical gap g is directly related to the grouting effects. The filling rate of grouting is determined by the geological radar data, and the statistics of the physical gap are given.
-
Keywords:
- soft soil /
- shield tunnel /
- gap parameter /
- construction deformation /
- uncertainty
-
-
表 1 我国软土土性参数均值
Table 1 Mean values for parameters of soft soils in China
分布地区与成因 天津 上海、武汉、江浙 广州、深圳 Ⅰ区滨海相 Ⅱ区滨海相 Ⅱ区三角洲相 Ⅲ区滨海相 Ⅲ区三角洲相 ρ/(g·cm-3) 1.750 1.720 1.720 1.630 1.620 e 1.309 1.397 1.328 1.709 1.768 Sr 97.700 96.100 — 97.400 97.000 Es1-2/MPa 2.650 2.430 2.900 2.100 1.890 av1-2/(MPa-1) 0.970 1.030 1.000 1.600 1.610 φ快剪/(°) 3.800 4.200 10.200 5.900 6.100 c快剪/kPa 10.700 10.800 13.400 9.300 11.200 φ固快/(°) 11.700 11.500 14.100 16.700 — c固快/kPa 15.100 14.400 11.800 10.400 — 表 2 我国软土土性参数变异系数
Table 2 COVs for parameters of soft soils in China
分布地区与成因 天津 上海、武汉、江浙 广州、深圳 Ⅰ区滨海相 Ⅱ区滨海相 Ⅱ区三角洲相 Ⅲ区滨海相 Ⅲ区三角洲相 ρ/(g·cm-3) 0.042 0.048 0.048 0.058 0.052 e 0.196 0.225 0.226 0.238 0.179 Sr 0.020 0.068 — 0.031 0.026 Es1-2/MPa) 0.285 0.244 0.325 0.367 0.255 av1-2/(MPa-1) 0.328 0.370 0.436 0.463 0.36 φ快剪/(°) 0.629 0.648 0.607 0.617 0.415 c快剪/kPa 0.430 0.319 0.436 0.474 0.421 φ固快/(°) 0.480 0.284 0.326 0.285 — c固快/kPa 0.345 0.268 0.535 0.518 — 表 3 数据库中软土土性参数统计特征
Table 3 Statistics for parameters of soft soils
来源 参数 均值 变异系数 CLAY/10/7490 cu(mob) /σv' 0.51 1.25 SH-CLAY/11/4051 e 1.24 0.14 SH-CLAY/11/4051 cu /σv'(UCST) 0.21 0.43 SH-CLAY/11/4051 cu /σv' (VST) 0.34 0.38 注:cu(mob) /σv'为汇总多种试验的归一化可变cu,UCST为无侧限抗压试验、VST十字板剪切试验。 表 4 软土的相关距离汇总
Table 4 Corraltion lengths for soft soils
序号 θx θz 最小值 最大值 均值 最小值 最大值 均值 ① 1.07 49 14.2 0.07 1.1 0.36 ② — — — 1 6.2 3.63 ③ — — — 0.79 1.25 0.91 ④ 0.14 163.8 31.9 0.05 3.62 1.29 ⑤ 1.2 1000 201.5 0.06 21 1.58 ⑥ 40.4 45.4 42.9 0.49 0.77 0.63 ⑦ 8.37 66 30.9 0.11 6.1 1.55 ⑧ 24.6 66.5 45.6 0.48 1.62 1.04 ⑨ — — — 1.1 2.0 1.55 ⑩ 12.7 45.5 33.2 0.14 7.19 2.08 ⑪ 9.65 45.4 29.8 0.095 6.47 1.40 ⑫ 22.2 80 47.6 0.14 6.2 1.70 ⑬ — — — 0.3 2.7 1.42 注:①冲积土,②Ankara黏土,③Chicago黏土,④黏土,⑤黏土,砂土与淤泥混合物,⑥杭州黏土,⑦海洋黏土,⑧近海土,⑨敏感黏土,⑩淤泥,⑪淤泥质黏土,⑫软黏土,⑬不排水土 表 5 总推力统计矩与变异系数
Table 5 Statistical moments and COVs of total force
表 6 刀盘扭矩统计矩与变异系数
Table 6 Statistical moments and COVs of cutter torque
地区,土质 均值(kN·m) 标准差(kN·m) 变异系数 ① 5750 790 0.14 ② 7612.12 1204.28 0.16 ③ 2082 390 0.19 ④ 4540 1380 0.30 ⑤ 981 240.5 0.25 表 7 掘进速度统计矩与变异系数
Table 7 Statistical moments and COVs of advance rate
地区,土质 均值(mm/min) 标准差(mm/min) 变异系数 ② 37.52 7.05 0.19 ③ 47 5.8 0.12 ④ 31.63 4.28 0.14 ⑤ 42.99 2.82 0.07 -
[1] CAMÓS C, ŠPAČKOVÁ O, STRAUB D, et al. Probabilistic approach to assessing and monitoring settlements caused by tunneling[J]. Tunnelling and Underground Space Technology, 2016, 51: 313-325. doi: 10.1016/j.tust.2015.10.041
[2] MOLLON G, DIAS D, SOUBRA A H. Probabilistic analyses of tunneling-induced ground movements[J]. Acta Geotechnica, 2013, 8(2): 181-199. doi: 10.1007/s11440-012-0182-7
[3] MIRO S, HARTMANN D, SCHANZ T. Global sensitivity analysis for subsoil parameter estimation in mechanized tunneling[J]. Computers and Geotechnics, 2014, 56: 80-88. doi: 10.1016/j.compgeo.2013.11.003
[4] FRANCO V H, DE F N GITIRANA G, DE ASSIS A P. Probabilistic assessment of tunneling-induced building damage[J]. Computers and Geotechnics, 2019, 113: 103097. doi: 10.1016/j.compgeo.2019.103097
[5] LEE K M, ROWE R K, LO K Y. Subsidence owing to tunneling: Ⅰ Estimating the gap parameter[J]. Canadian Geotechnical Journal, 1992, 29(6): 929-940. doi: 10.1139/t92-104
[6] 孟德强. 中国软土分区讨论及其参数统计特征研究[D]. 石家庄: 石家庄铁道大学, 2020. MENG Deqiang. Discussion on Soft Soil Zoning in China and Study on Its Parameter Statistical Characteristics[D]. Shijiazhuang: Shijiazhuang Tiedao University, 2020. (Chinese)
[7] BJERRUM L. Embankments on soft ground[C]// Performance of Earth and Earth-Supported Structures (ASCE), Lafayette, Indian, 1972: 1-54.
[8] KULHAWY F H, MAYNE P W. Manual on Estimating Soil Properties for Foundation Design (Report EL-6800)[R]. Palo Alto, Calif: Electric Power Research Institute, 1990.
[9] MESRI G, HUVAJ N. Shear strength mobilized in undrained failure of soft clay and silt deposits[C]// Advances in Measurement and Modeling of Soil Behaviour. Denver, Colorado, USA Reston, VA: American Society of Civil Engineers, 2007: 1-22.
[10] FENTON G A, GRIFFITHS D V. Bearing capacity prediction of spatially random c-φ soils[J]. Canadian Geotechnical Journal, 2003, 40(1): 54-65 doi: 10.1139/t02-086
[11] 陈立宏, 陈祖煜, 刘金梅. 土体抗剪强度指标的概率分布类型研究[J]. 岩土力学, 2005, 26(1): 37-40, 45. CHEN Lihong, CHEN Zuyu, LIU Jinmei. Probability distribution of soil strength[J]. Rock and Soil Mechanics, 2005, 26(1): 37-40, 45. (in Chinese)
[12] CAMI B S, PHOON Javankhoshdel K K, CHING J. Scale of fluctuation for spatially varying soils: estimation methods and values[J]. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 2020, 6(4): 03120002. doi: 10.1061/AJRUA6.0001083
[13] CHING J, PHOON K K. Modeling parameters of structured clays as a multivariate normal distribution[J]. Canadian Geotechnical Journal, 2012, 49(5): 522-545. doi: 10.1139/t2012-015
[14] CHING J, PHOON K K, CHEN C H. Modeling piezocone cone penetration (CPTU) parameters of clays as a multivariate normal distribution[J]. Canadian Geotechnical Journal, 2014, 51(1): 77-91 doi: 10.1139/cgj-2012-0259
[15] CHING J, PHOON K K. Reducing the transformation uncertainty for the mobilized undrained shear strength of clays[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 141(2): 04014103. doi: 10.1061/(ASCE)GT.1943-5606.0001236
[16] 王凯, 盛永清, 王国安, 等. 海域复杂地层超大直径泥水盾构掘进参数分析研究[J]. 施工技术(中英文), 2021, 50(19): 37-41. WANG Kai, SHENG Yongqing, WANG Guoan, et al. Analysis of parameters about extra-large diameter slurry shield tunneling through submarine complex strata[J]. Construction Technology, 2021, 50(19): 37-41. (in Chinese)
[17] ZHOU C, DING L Y, SKIBNIEWSKI M J, et al. Data based complex network modeling and analysis of shield tunneling performance in metro construction[J]. Advanced Engineering Informatics, 2018, 38: 168-186 doi: 10.1016/j.aei.2018.06.011
[18] 丁小彬, 董耀俊. 基于正态分布理论的盾构掘进参数预警值的分析与计算[J]. 科技通报, 2021, 37(10): 106-111. DING Xiaobin, DONG Yaojun. Analysis and calculation of alarm value for shield machine parameters based on the normal distribution theory[J]. Bulletin of Science and Technology, 2021, 37(10): 106-111. (in Chinese)
[19] 施虎, 龚国芳, 杨华勇, 等. 盾构掘进机推进力计算模型[J]. 浙江大学学报(工学版), 2011, 45(1): 126-131. SHI Hu, GONG Guofang, YANG Huayong, et al. Determination of thrust force for shield tunneling machine[J]. Journal of Zhejiang University (Engineering Science), 2011, 45(1): 126-131. (in Chinese)
[20] 陈仁朋, 刘源, 汤旅军, 等. 复杂地层土压平衡盾构推力和刀盘扭矩计算研究[J]. 地下空间与工程学报, 2012, 8(1): 26-32. CHEN Renpeng, LIU Yuan, TANG Lüjun, et al. Research on calculation of thrust and cutter head torque on shield in complex strata[J]. Chinese Journal of Underground Space and Engineering, 2012, 8(1): 26-32. (in Chinese)
[21] 旷斌. 土压平衡式盾构掘进顶推力和刀盘扭矩理论研究[J]. 科学技术与工程, 2019, 19(36): 331-336. KUANG Bin. Theoretical study on top pressure and cutter torque of earth pressure balanced shield tunneling[J]. Science Technology and Engineering, 2019, 19(36): 331-336. (in Chinese)
[22] 吕强, 傅德明. 土压平衡盾构掘进机刀盘扭矩模拟试验研究[J]. 岩石力学与工程学报, 2006, 25(增刊1): 3137-3143. LÜ Qiang, FU Deming. Research on torque of cutterhead for earth pressure balance shield with simulating experimental[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(S1): 3137-3143. (in Chinese)
[23] 王洪新. 土压平衡盾构刀盘扭矩计算及其与盾构施工参数关系研究. 土木工程学报, 2009, 42(9): 109-113. WANG Hongxin. Calculation of cutterhead torque for EPB shield and the relationship between cutterhead torque and shield driving parameters[J]. China Civil Engineering Journal, 2009, 42(9): 109-113. (in Chinese)
[24] 颜静, 王飞, 付春青, 等. 地铁盾构隧道同步注浆地表沉降控制效果影响因素的现场试验研究[J]. 城市轨道交通研究, 2021, 24(10): 48-53. YAN Jing, WANG Fei, FU Chunqing, et al. Field experiment on influencing factors of surface settlement control effect induced by shield tunnel synchronous grouting[J]. Urban Mass Transit, 2021, 24(10): 48-53. (in Chinese)
[25] 李鸿. 壁后注浆对大直径盾构隧道劣化的影响[J]. 地下工程与隧道, 2017(2): 27-30, 77. LI Hong. Backfill grouting influence on deterioration of large diameter shield tunnel[J]. Underground Engineering and Tunnels, 2017(2): 27-30, 77. (in Chinese)
[26] 羌培. 盾构施工对大直径隧道劣化的影响分析[J]. 施工技术, 2017, 46(7): 107-110. QIANG Pei. Influence of shield construction on deterioration of large diameter tunnel[J]. Construction Technology, 2017, 46(7): 107-110. (in Chinese)
[27] 张铭. 上海延安东路隧道壁后注浆探地雷达检测及结果分析[J]. 地下工程与隧道, 2016(1): 15-17, 21. ZHANG Ming. Inspection and results analysis of grouting behind lining in Shanghai East Yan'an Road tunnel by ground penetrating radar[J]. Underground Engineering and Tunnels, 2016(1): 15-17, 21. (in Chinese)
[28] 田海洋. 越江公路盾构隧道壁后注浆探地雷达探测试验及应用研究[D]. 上海: 同济大学, 2008. TIAN Haiyang. Test and Application of Ground Penetrating Radar for Grouting Behind the wall of Shield Tunnel on River-Crossing Highway[D]. Shanghai: Tongji University, 2008. (in Chinese)
[29] LOGANATHAN N, POULOS H G. Analytical prediction for tunnelling-induced ground movements in clays[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(9): 846-856.
-
期刊类型引用(5)
1. 李晓强,梁靖宇,路德春,苗金波,杜修力. 非饱和土的非正交弹塑性本构模型. 中国科学:技术科学. 2022(07): 1048-1064 . 百度学术
2. 刘祎,蔡国庆,李舰,赵成刚. 非饱和土热–水–力全耦合本构模型及其验证. 岩土工程学报. 2021(03): 547-555 . 本站查看
3. 王壹敏,陈志敏,孙胜旗,赵运铎,张常书. 基于邓肯-张模型的低液限粉质黏土-砂的强度规律. 科学技术与工程. 2021(08): 3252-3257 . 百度学术
4. 胡小荣,蔡晓锋,瞿鹏. 基于坐标平移法的正常固结非饱和土三剪弹塑性本构模型. 应用数学和力学. 2021(08): 813-831 . 百度学术
5. 杨光昌,白冰,刘洋,陈佩佩. 描述饱和砂土剪切特性的一个热力学本构模型. 哈尔滨工业大学学报. 2021(11): 93-100 . 百度学术
其他类型引用(7)