Experimental study on dynamic strength of breakwater foundation under wave loads
-
摘要: 通过模拟波浪荷载,对防波堤地基土做了等压固结不排水动三轴剪切试验,分析得出,循环剪应力比与破坏振次可用幂函数拟合,但拟合参数不是常数,与土类和围压有关;土体在剪切过程中孔隙水压力会不断增加,但始终没有达到初始的围压数值,达到破坏标准时,约为初始围压的60%~80%;动孔压比与振次比关系可用幂函数很好地拟合,拟合参数不是常数,与土性有关;3种土的动应变发展模式不同,粉质黏土的压应变一直大于拉应变,粉土是压应变与拉应变基本同时发展,砂土则在开始一段时间,轴向应变很小,压应变小于拉应变,中后期,轴向应变迅速增长,压应变逐渐超过了拉应变。Abstract: By simulating wave loads, the dynamic triaxial shear tests foundation soils of on breakwaters under isobaric consolidation and undrained flow are carried out. The analysis shows that the cyclic shear stress ratio can be fitted by the power function with failure frequency, but the fitting parameters are not constant. The pore water pressure of soils will increase continuously in the course of shear, but it does not reach the initial value of confining pressure. When it reaches the failure standard, it is about 60%~80% of the initial confining pressure. The relationship between the dynamic pore pressure ratio and the vibration frequency ratio can be well fitted by the power function, and the fitting parameters are not constant, which are related to soil properties. At the beginning, the axial strain is very small, and the compressive strain is less than the tensile strain. At the middle and later stages, the axial strain increases rapidly, and the compressive strain gradually exceeds the tensile strain.
-
Keywords:
- wave load /
- dynamic triaxial test /
- dynamic strength /
- vibration /
- pore water pressure /
- strain
-
-
表 1 土样的物理性质
Table 1 Physical property indexes of soil samples
土类 含水率/% 密度/(g·cm-3) 液限/% 塑限/% 塑性指数 液性指数 粉质黏土 29.6 1.86 30.8 17.6 13.2 0.91 粉土 25.8 1.91 26.5 14.0 8.5 1.39 粉砂 21.3 1.97 — — — — 表 2 DDS-70型动三轴仪技术参数
Table 2 Technical parameters of dynamic triaxial instrument
最大动轴力/N 侧向压力/MPa 反压/MPa 频率/Hz 最大轴向位移/mm 1370 0~0.6 0~0.3 ≤10 20 表 3 不同土类的拟合参数
Table 3 Fitting parameters of different soil types
土类 拟合参数a 拟合参数b 相关系数R 粉质黏土
粉土
粉砂0.855
0.825
0.7270.598
0.391
0.4400.955
0.980
0.942 -
[1] 刘丹. 波浪荷载对海洋黏土力学性状影响的试验研究[D]. 南京: 南京水利科学研究院, 2010. LIU Dan. Experimental Study on the Mechanical Properties of Marine Clay Influenced by Wave Load[D]. Nanjing: Nanjing Hydraulic Research Institute, 2010. (in Chinese)
[2] 张晨明, 董秀竹, 郭莹, 等. 波浪荷载作用下砂土变形特性的模拟试验研究[J]. 地震工程与工程振动, 2005, 25(2): 155-159. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC20050200Q.htm ZHANG Chenmin, DONG Xiuzhu, GUO Yin, et al. Experimental study on dynamic deformation behavior of sand under wave-induced loading[J]. Earthquake Engineering and Engineering Vibration, 2005, 25(2): 155-159. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC20050200Q.htm
[3] 孟凡丽, 卢成原, 王姗姗. 波浪荷载下粉质土动应变和动强度的试验研究[J]. 浙江工业大学学报, 2007, 35(6): 671-674. doi: 10.3969/j.issn.1006-4303.2007.06.019 MENG Fanli, LU Chengyuan, WANG Sansan. Experimental study on dynamic strain and strength of silt under wave load[J]. Journal of Zhejiang University of Technology, 2007, 35(6): 671-674. (in Chinese) doi: 10.3969/j.issn.1006-4303.2007.06.019
[4] 闫澍旺, 封晓伟. 天津港软黏土强度循环弱化试验研究及应用[J]. 天津大学学报, 2010, 43(11): 943-948. doi: 10.3969/j.issn.0493-2137.2010.11.001 YAN Shuwang, FENG Xiaowei. Test on strength cyclic softening of Tianjin harbor soft clay and its application[J]. Journal of Tianjin University, 2010, 43(11): 943-948. (in Chinese) doi: 10.3969/j.issn.0493-2137.2010.11.001
[5] 张建民, 王稳祥. 振动频率对饱和砂土动力特性的影响[J]. 岩土工程学报, 1990, 12(1): 89-97. http://cge.nhri.cn/cn/article/id/9344 ZHANG Jianmin, WANG Wenxiang. Effect of vibrationg frequency on dynamic behavior of saturated sand[J]. Chinese Journal of Geotechnical Engineering, 1990, 12(1): 89-97. (in Chinese) http://cge.nhri.cn/cn/article/id/9344
[6] 陈国兴, 刘雪珠. 南京粉质黏上与粉砂互层土及粉细砂的振动孔压发展规律研究[J]. 岩土工程学报, 2004, 26(1): 79-82. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200401015.htm CHEN Guoxing, LIU Xuezhu. Study on dynamic pore water pressure in silty clay inter bedded with fine sand of nanjing[J]. Chinese Journal of Geoteclnical Engineering, 2004, 26(1): 79-82. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200401015.htm
[7] SEED H B, LEE K L. Liquefaction of saturated sands during cyclic loading[J]. Journal of the Soil Mechanics and Foundation Divisions, ASCE, 1966, 92(6): 105-34. doi: 10.1061/JSFEAQ.0000913
[8] 曾长女, 刘汉龙, 丰土根, 等. 饱和粉土孔隙水压力性状试验研究[J]. 岩土力学, 2005, 26(12): 1963-1966. doi: 10.3969/j.issn.1000-7598.2005.12.020 ZENG Changnü, LIU Hanlong, FENG Tugen, et al. Test study on pore water pressure mode of saturated silt[J]. Rock and Soil Mechanics, 2005, 26(12): 1963-1966. (in Chinese) doi: 10.3969/j.issn.1000-7598.2005.12.020
[9] 郭莹, 贺林. 振动频率对饱和砂土液化强度的影响[J]. 防灾减灾工程学报, 2009, 29(6): 618-623. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK200906003.htm GUO Ying, HE Lin. The influences of vibration frequencies on liquefactiong strength of saturated sands[J]. Journal of Disaster Preventiong and Mitigationg Engineering, 2009, 29(6): 618-623. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK200906003.htm
[10] 张健, 高玉峰, 沈扬, 等. 波浪荷载作用下饱和粉土反正弦孔压拟合参数影响因素分析[J]. 岩土力学, 2011, 32(3): 727-732. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201103015.htm ZHANG Jian, GAO Yufeng, SHEN Yang, et al. Factor analysis of fitting parameter for saturated silt arcsin pore water pressure under wave loading[J]. Rock and Soil Mechanics, 2011, 32(3): 727-732. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201103015.htm