• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

砂土静力触探试验的DEM-FDM耦合数值模拟研究

宋跃, 顾晓强, 胡靖, 郑兴

宋跃, 顾晓强, 胡靖, 郑兴. 砂土静力触探试验的DEM-FDM耦合数值模拟研究[J]. 岩土工程学报, 2025, 47(6): 1249-1258. DOI: 10.11779/CJGE20240172
引用本文: 宋跃, 顾晓强, 胡靖, 郑兴. 砂土静力触探试验的DEM-FDM耦合数值模拟研究[J]. 岩土工程学报, 2025, 47(6): 1249-1258. DOI: 10.11779/CJGE20240172
SONG Yue, GU Xiaoqiang, HU Jing, ZHENG Xing. DEM-FDM coupled simulation of cone penetration tests in a virtual calibration chamber with sand[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(6): 1249-1258. DOI: 10.11779/CJGE20240172
Citation: SONG Yue, GU Xiaoqiang, HU Jing, ZHENG Xing. DEM-FDM coupled simulation of cone penetration tests in a virtual calibration chamber with sand[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(6): 1249-1258. DOI: 10.11779/CJGE20240172

砂土静力触探试验的DEM-FDM耦合数值模拟研究  English Version

基金项目: 

国家自然科学基金项目 42361164615

详细信息
    作者简介:

    作者简介:宋跃(1992—),男,博士研究生,主要从事海上风电大直径单桩水平承载特性的研究工作。E-mail: eldembu@tongji.edu.cn

    通讯作者:

    顾晓强, E-mail: guxiaoqiang@tongji.edu.cn

  • 中图分类号: TU411

DEM-FDM coupled simulation of cone penetration tests in a virtual calibration chamber with sand

  • 摘要: 静力触探是岩土工程最重要的原位测试手段之一,然而静力触探不能直接测出土体参数,需借助标定罐试验或数值模拟中已有的锥尖阻力与土体参数的经验关系来确定土体参数。本研究利用离散元(DEM)与有限差分法(FDM)耦合数值方法实现了砂土中标定罐静力触探贯入全过程的高效模拟,探究了影响锥尖阻力的主要因素。模拟中,首先根据砂土单元体宏观力学特性标定了砂土颗粒接触模型参数,并进一步分析了标定罐尺寸、砂土密实度、围压等对锥尖阻力影响,最后建立了归一化锥尖阻力Q和峰值内摩擦角φpeak的关系。研究结果表明,在离散-连续模型径向尺寸比Rdf为0.67且标定罐归一化径向长度Rd为20的情况下,模拟的尺寸效应可忽略。同时,锥尖阻力的模拟结果与小孔扩张理论计算结果吻合良好,验证了数值模拟的可靠性。归一化锥尖阻力Q和峰值内摩擦角φpeak之间呈指数关系,与原位测试结果接近,进一步验证了耦合模拟方法的准确性,其结果可为砂土静力触探锥尖阻力与土体参数经验关系的建立提供重要参考。
    Abstract: The cone penetration test, considered one of the most crucial in-situ testing methods in geotechnical engineering, is unable to directly measure soil parameters. Generally, the empirical relationship between the penetration resistance and the soil parameters is established through tests or numerical simulations. In this research, a coupled numerical approach of the discrete element method (DEM) and the finite difference method (FDM) is employed to simulate the entire cone penetration test process within a calibration chamber and unveil the mechanisms that influence the penetration resistance. Firstly, the microscopic parameters of the sand are calibrated based on its macroscopic behaviors. Additionally, the effects of calibration chamber size, sand density and confining stress on the penetration resistance are thoroughly analyzed. Finally, a relationship is established between the normalized penetration resistance Q and the peak internal friction angle φpeak. The findings indicate that the size effects in the simulation become negligible when the continuous-discrete model size ratio Rdf reaches 0.67 and the normalized radial length Rd of the calibration chamber is set at 20. Furthermore, the simulated penetration resistance closely matches the results obtained by the cavity expansion methods, confirming the reliability of the numerical simulation. An exponential relationship is observed between Q and φpeak, which closely aligns with the in-situ test results. This further validates the accuracy of the coupled simulation method. These outcomes offer valuable insights for establishing empirical relationships between the cone penetration resistance in sand and the soil parameters in geotechnical engineering.
  • 图  1   离散-连续耦合数值模拟模型

    Figure  1.   Details of discrete-continuous simulation model

    图  2   试验和模拟中砂土颗粒级配曲线

    Figure  2.   Experimental and simulated grain-size distribution curves

    图  3   三轴模拟与试验结果对比

    Figure  3.   Comparison of triaxial test results in simulation and laboratory

    图  4   标定罐试样高度对锥尖阻力的影响

    Figure  4.   Influences of height of calibration chamber on cone-tip resistance

    图  5   标定罐试样离散-连续区域径向尺寸对锥尖阻力影响

    Figure  5.   Influences of discrete-continuous region size ratio on cone-tip resistance

    图  6   标定罐归一化径向尺寸对锥尖阻力影响

    Figure  6.   Influences of horizontal size of calibration chamber on cone-tip resistance

    图  7   锥尖阻力模拟结果对比

    Figure  7.   Comparison of simulated results of cone-tip resistance

    图  8   标定罐土体径向位移云图

    Figure  8.   Displacement contours of calibration chamber

    图  9   等向围压对锥尖阻力的影响

    Figure  9.   Influences of confining stress on cone-tip resistance

    图  10   锥尖阻力模拟值与计算值的对比

    Figure  10.   Comparison of predicted and simulated values of qc

    图  11   锥尖阻力模拟值和预测值对比

    Figure  11.   Comparison between DEM simulation and analytical solution

    图  12   径向应力的理论解和数值解

    Figure  12.   Theoretical and numerical solutions of radial stress

    图  13   归一化锥尖阻力与峰值内摩擦角关系

    Figure  13.   Relationships between normalized cone-tip resistance Q and peak internal friction angle φpeak

    表  1   砂土颗粒接触模型参数

    Table  1   Microscopic contact parameters of sand

    参数 数值
    颗粒密度(ρ) 2650 kg/m3
    刚度系数(k0) 8×108 N/m2
    刚度比(αs) 0.15
    颗粒摩擦系数(μ) 0.45
    颗粒抗转动系数(μr) 0.35
    颗粒法向刚度(kn) kn = k0×r
    颗粒切向刚度(ks) ks = αs×kn
    下载: 导出CSV

    表  2   莫尔-库仑模型参数取值

    Table  2   Parameters of Mohr-Coulomb model

    相对密实度Dr/% 杨氏模量E/ MPa 泊松比ν 内摩擦角φ/(°) 剪胀角ψ/(°)
    70 60.6 0.3 36.5 10.3
    40 36.3 0.3 31.9 3.2
    10 30 0.3 30.1 0
    下载: 导出CSV

    表  3   模型边界及锥体参数

    Table  3   Model boundary and cone parameters

    参数 数值
    耦合墙法向刚度 4×106 N/m
    耦合墙切向刚度 6×105 N/m
    耦合墙摩擦系数 0.45
    耦合墙抗转动系数 0.35
    边界墙法向刚度 1×1010 N/m
    边界墙切向刚度 1×1010 N/m
    边界墙摩擦系数 0
    边界墙抗转动系数 0
    锥体法向刚度 1×1010 N/m
    锥体切向刚度 1×1010 N/m
    锥体摩擦系数 0.2
    锥体贯入速度 0.1 m/s
    下载: 导出CSV

    表  4   莫尔库仑本构模型模拟三轴试验的参数

    Table  4   Parameters of Mohr-Coulomb model for simulating triaxial test results

    Dr/% p0/kPa qpeak/kPa E/MPa ν ψpeak/(°) ϕpeak/(°)
    10 100 205 20.3 0.23 3.9 30.4
    40 100 224 36.3 0.25 6.1 31.9
    70 100 311 56.5 0.25 18.1 36.5
    10 200 405 21.2 0.24 5.1 30.2
    40 200 448 38.4 0.26 4.8 31.9
    70 200 580 56.7 0.25 16.8 36.3
    10 400 801 26.3 0.21 2.9 30.1
    40 400 874 40.1 0.27 5.9 31.5
    70 400 1132 56.3 0.25 16.1 35.9
    下载: 导出CSV
  • [1] 刘松玉, 吴燕开. 论我国静力触探技术(CPT)现状与发展[J]. 岩土工程学报, 2004, 26(4): 553-556. https://cge.nhri.cn/article/id/11468

    LIU Songyu, WU Yankai. On the state-of-art and development of CPT in China[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(4): 553-556. (in Chinese) https://cge.nhri.cn/article/id/11468

    [2] 蔡国军, 刘松玉, 童立元, 等. 基于静力触探测试的国内外砂土液化判别方法[J]. 岩石力学与工程学报, 2008, 27(5): 1019-1027. doi: 10.3321/j.issn:1000-6915.2008.05.018

    CAI Guojun, LIU Songyu, TONG Liyuan, et al. Evaluation of liquefaction of sandy soils based on cone penetration test[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(5): 1019-1027. (in Chinese) doi: 10.3321/j.issn:1000-6915.2008.05.018

    [3]

    BOARD T R. Cone Penetrating Testing[M]. Washington D C: Transportation Research Board, 2007.

    [4] 王钟琦. 我国的静力触探及动静触探的发展前景[J]. 岩土工程学报, 2000, 22(5): 517-522. doi: 10.3321/j.issn:1000-4548.2000.05.001

    WANG Zhongqi. The Chinese CPT and the prospect of penetration tests[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(5): 517-522. (in Chinese) doi: 10.3321/j.issn:1000-4548.2000.05.001

    [5]

    LUNNE T, POWELL J J M, ROBERTSON P K. Cone Penetration Testing in Geotechnical Practice[M]. Boca Raton: CRC Press, 2002.

    [6] 刘松玉, 蔡国军, 童立元, 等. 基于CPTU测试的先期固结压力确定方法试验研究[J]. 岩土工程学报, 2007, 29(4): 490-495. doi: 10.3321/j.issn:1000-4548.2007.04.004

    LIU Songyu, CAI Guojun, TONG Liyuan, et al. On preconsolidation pressure of clays from piezocone tests[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(4): 490-495. (in Chinese) doi: 10.3321/j.issn:1000-4548.2007.04.004

    [7] 马海鹏, 陈祖煜, 于沭. 上海地区土体抗剪强度与静力触探比贯入阻力相关关系研究[J]. 岩土力学, 2014, 35(2): 536-542.

    MA Haipeng, CHEN Zuyu, YU Shu. Correlations of soil shear strength with specific penetration resistance of CPT in Shanghai Area[J]. Rock and Soil Mechanics, 2014, 35(2): 536-542. (in Chinese)

    [8]

    SALGADO R, PREZZI M. Computation of cavity expansion pressure and penetration resistance in sands[J]. International Journal of Geomechanics, 2007, 7(4): 251-265. doi: 10.1061/(ASCE)1532-3641(2007)7:4(251)

    [9]

    AHMADI M, KARAMBAKHSH P. K0 determination of sand using CPT calibration chamber[C]// 2nd International Symposium on Cone Penetration Testing, California, 2009.

    [10]

    BEEN K, CROOKS J H A, BECKER D E, et al. The cone penetration test in sands: part I, state parameter interpretation[J]. Géotechnique, 1986, 36(2): 239-249. doi: 10.1680/geot.1986.36.2.239

    [11]

    MAYNE P. Calibration chamber detabase and boundary effects correction for CPT data[C]//Proceedings of the 1st International Symposium on Calibration Chamber Testing, New York, 1991.

    [12]

    SALGADO R, MITCHELL J K, JAMIOLKOWSKI M. Calibration chamber size effects on penetration resistance in sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(9): 878-888. doi: 10.1061/(ASCE)1090-0241(1998)124:9(878)

    [13] 邱延峻. 静力触探机理研究[J]. 西南交通大学学报, 1993(3): 46-52.

    QIU Yanjun. Study of the mechanism of static penetration[J]. Journal of Southwest JiaoTong University, 1993(3): 46-52. (in Chinese)

    [14] 储亚, 刘松玉, 蔡国军, 等. 基于电阻率静力触探的膨胀土膨胀性原位评价应用研究[J]. 地基处理, 2023(2): 91-96, 104.

    CHU Ya, LIU Songyu, CAI Guojun, et al. Application of in situ evaluation of expansive soil's expansibility based on resistivity static cone penetration test[J]. Journal of Ground Improvement, 2023(2): 91-96, 104. (in Chinese)

    [15] 孔壮壮, 王栋, 张民生, 等. 高压条件下石英砂中的静力触探试验及大变形模拟[J]. 土木与环境工程学报(中英文), 2023, 45(4): 49-55.

    KONG Zhuangzhuang, WANG Dong, ZHANG Minsheng, et al. High-pressure cone penetration tests in silica sand using calibration chamber and large deformation analysis[J]. Journal of Civil and Environmental Engineering, 2023, 45(4): 49-55. (in Chinese)

    [16]

    PARKIN A, LUNNE T. Boundary effects in the laboratory calibration of a cone penetrometer for sand[J]. Norwegian Geotechnical Institute Publication, 1982.

    [17]

    HUANG W, SHENG D, SLOAN S W, et al. Finite element analysis of cone penetration in cohesionless soil[J]. Computers and Geotechnics, 2004, 31(7): 517-528. doi: 10.1016/j.compgeo.2004.09.001

    [18]

    TOLOOIYAN A, GAVIN K. Modelling the cone penetration test in sand using cavity expansion and arbitrary lagrangian eulerian finite element methods[J]. Computers and Geotechnics, 2011, 38(4): 482-490. doi: 10.1016/j.compgeo.2011.02.012

    [19]

    GUPTA T, CHAKRABORTY T, ABDEL-RAHMAN K, et al. Large deformation finite element analysis of static cone penetration test[J]. Indian Geotechnical Journal, 2016, 46(2): 115-123. doi: 10.1007/s40098-015-0157-3

    [20]

    JIANG M J, YU H S, HARRIS D. Discrete element modelling of deep penetration in granular soils[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30(4): 335-361. doi: 10.1002/nag.473

    [21]

    ARROYO M, BUTLANSKA J, GENS A, et al. Cone penetration tests in a virtual calibration chamber[J]. Géotechnique, 2011, 61(6): 525-531. doi: 10.1680/geot.9.P.067

    [22]

    BUTLANSKA J, ARROYO M, GENS A, et al. Multi-scale analysis of cone penetration test (CPT) in a virtual calibration chamber[J]. Canadian Geotechnical Journal, 2014, 51(1): 51-66. doi: 10.1139/cgj-2012-0476

    [23] 王长虹, 汤道飞, 王昆, 等. 静力触探试验的宏细观耦合分析方法与应用[J]. 岩土力学, 2021, 42(7): 1815-1827.

    WANG Changhong, TANG Daofei, WANG Kun, et al. Macro and micro coupling analysis method and application of cone penetration test[J]. Rock and Soil Mechanics, 2021, 42(7): 1815-1827. (in Chinese)

    [24]

    KIDANE M, PEÑA OLARTE A A, CUDMANI R. Coupled DEM-FDM simulation of cone penetration tests in coarse grained soils[J]. EPJ Web of Conferences, 2021, 249: 11012. doi: 10.1051/epjconf/202124911012

    [25]

    Itasca Consulting Group, Inc. FLAC3D (Fast Lagrangian Analysis of Continua in 3D) Theory and Background[R]. Minneapolis: Itasca Consulting Group, Inc., 2017.

    [26]

    SEIF EL DINE B, DUPLA J C, FRANK R, et al. Mechanical characterization of matrix coarse-grained soils with a large-sized triaxial device[J]. Canadian Geotechnical Journal, 2010, 47(4): 425-438. doi: 10.1139/T09-113

    [27] 邓益兵, 杨彦骋, 史旦达, 等. 三维离散元大尺度模拟中变粒径方法的优化及其应用[J]. 岩土工程学报, 2017, 39(1): 62-70. doi: 10.11779/CJGE201701004

    DENG Yibing, YANG Yancheng, SHI Danda, et al. Refinement andapplication ofvariable particle- sizemethodsin 3D discrete element modelling forlarge-scale problems[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1): 62-70. (in Chinese) doi: 10.11779/CJGE201701004

    [28]

    YAN W M, DONG J J. Effect of particle grading on the response of an idealized granular assemblage[J]. International Journal of Geomechanics, 2011, 11(4): 276-285. doi: 10.1061/(ASCE)GM.1943-5622.0000085

    [29]

    IWASHITA K, ODA M. Rolling resistance at contacts in simulation of shear band development by DEM[J]. Journal of Engineering Mechanics, 1998, 124(3): 285-292. doi: 10.1061/(ASCE)0733-9399(1998)124:3(285)

    [30]

    GU X Q, ZHANG J C, HUANG X. DEM analysis of monotonic and cyclic behaviors of sand based on critical state soil mechanics framework[J]. Computers and Geotechnics, 2020, 128: 103787. doi: 10.1016/j.compgeo.2020.103787

    [31]

    MARTINEZ A, FROST J D, HEBELER G L. Experimental study of shear zones formed at sand/steel interfaces in axial and torsional axisymmetric tests[J]. Geotechnical Testing Journal, 2015, 38(4): 20140266.

    [32]

    DA CRUZ F, EMAM S, PROCHNOW M, et al. Rheophysics of dense granular materials: discrete simulation of plane shear flows[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2005, 72(2 Pt 1): 021309.

    [33]

    JANDA A, OOI J Y. DEM modeling of cone penetration and unconfined compression in cohesive solids[J]. Powder Technology, 2016, 293: 60-68. doi: 10.1016/j.powtec.2015.05.034

    [34]

    GUI M, Bolton, GARNIER J, et al. Guidelines for cone penetration tests in sand[C]// Proceedings of the International Conference Centrifuge, Tokyo, 1998.

    [35]

    JAMIOLKOWSKI M, LO PRESTI D C F, MANASSERO M. Evaluation of relative density and shear strength of sands from CPT and DMT[C]// Soil Behavior and Soft Ground Construction. Cambridge, Massachusetts, USA. Reston, VA: American Society of Civil Engineers, 2003.

    [36]

    GHALI M, CHEKIRED M, KARRAY M. A laboratory-based study correlating cone penetration test resistance to the physical parameters of uncemented sand mixtures and granular soils[J]. Engineering Geology, 2019, 255: 11-25. doi: 10.1016/j.enggeo.2019.04.015

    [37]

    YU H S, MITCHELL J K. Analysis of cone resistance: review of methods[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(2): 140-149. doi: 10.1061/(ASCE)1090-0241(1998)124:2(140)

    [38]

    FALAGUSH O, MCDOWELL G R, YU H S. Discrete element modeling of cone penetration tests incorporating particle shape and crushing[J]. International Journal of Geomechanics, 2015, 15(6): 04015003. doi: 10.1061/(ASCE)GM.1943-5622.0000463

    [39]

    MOHAMED A, GUTIERREZ M. Comprehensive study of the effects of rolling resistance on the stress-strain and strain localization behavior of granular materials[J]. Granular Matter, 2010, 12(5): 527-541. doi: 10.1007/s10035-010-0211-x

    [40]

    JAEGER R A, MAKI I P. Estimating the peak friction angle of sandy soils in situ with state-based overburden normalized CPT tip resistance[C]// Proceedings of the 36th Annual USSD Conference: Celebrating the Value of Dams and Levees-Yesterday, Today and Tomorrow, Denver, 2016.

    [41]

    HARMAN D E. A Statistical Study of Static Cone Bearing Capacity: Vertical Effective Stress, and relative Density of Dry and Saturated Fine Sands in A Large Triaxial Test Chamber[D]. Gainesville: University of Florida, 1976.

    [42]

    BALDI G, BELLOTTI R, GHIONNA V, et al. Design parameters for sands from CPT[C]// Proceedings of the Second European Symposium on Penetration Testing, Amsterdam, 1982.

图(13)  /  表(4)
计量
  • 文章访问数:  301
  • HTML全文浏览量:  27
  • PDF下载量:  91
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-22
  • 网络出版日期:  2024-08-20
  • 刊出日期:  2025-05-31

目录

    /

    返回文章
    返回