Mechanical analysis and field measurement of large-section quasi-rectangular pipe jacking buried deeply in soft soils
-
摘要: 深埋大断面矩形及类矩形顶管越来越多应用于软土地铁车站等大型城市地下结构建设,该新型结构水土荷载特征及结构受力性能对保障城市地下空间长期安全具有重要作用,然而相关研究仍较为有限。本研究依托上海轨道交通14号线静安寺车站工程,结合现场实测与理论分析,研究了软土深埋大断面类矩形顶管结构水土压力与受力响应的空间分布特征,对比分析了不同土压力理论及土-结构相互作用模式对顶管结构内力响应的影响方式,开展了设计理论的适用性评估。主要结论为:①结构顶部竖向土压力的实测值接近土柱理论的计算值,且基于土柱土压力计算的结构弯矩与实测较为吻合,反映出本工程中顶管顶部土拱效应可能较弱;②类矩形顶管的弯矩呈“蝴蝶状”分布,表明结构变形模式为竖向内凹及横向外凸,其中横向外凸可进一步诱发地层水平抗力;③地层水平抗力对大断面类矩形顶管结构内力可产生显著影响,现有设计规范较多忽略这一因素,可导致结构弯矩被严重高估(如依托工程中顶管腰部弯矩的计算误差可达2倍)。Abstract: Deeply buried large-section rectangular and quasi-rectangular pipe jackings are increasingly used in the construction of large-scale urban underground structures such as subway stations in soft soils. The water and earth pressures and internal force responses of the structures can play an important role in ensuring the long-term safety of urban underground space. However, the relevant researches are still limited. Based on the field measurements of Jing'an Temple Station Project of Shanghai Metro Line 14, the spatial distribution of water and earth pressure and structural responses of large-section rectangular pipe-jacking structure deeply buried in soft soils are investigated. Then, the influences of earth pressure theories and soil-structure interaction modes on the internal force responses of pipe-jacking structures are analyzed. The applicability of different design methods are evaluated. The main conclusions include: (1) The measured vertical earth pressures at the top of the structures are close to the theoretical values of soil column weight, and the bending moments of the structures calculated by using the above theoretical earth pressure are consistent with the field measurements, and thus suggesting that the soil arching effects at the top of the pipe jacking in this project may not be significant. (2) The bending moment of the quasi-rectangular pipe jacking shows a "butterfly-shaped" distribution, indicating that the deformation mode of the structures is vertically concave and transversely convex, while the transverse convexity of the waist can further result in horizontal ground reactions. (3) The horizontal soil reactions can have significant impacts on the internal force of the large-section rectangular pipe jacking structures. The existing design specifications for pipe-jacking structures mostly ignore this factor, which can lead to a remarkable overestimation of the structural bending moment (e.g., for the structures in the case study, and the computation error for the bending moment at the waist areas can be a factor of two).
-
-
表 1 土层物理力学参数
Table 1 Physical and mechanical parameters of soil layers
地层名称 h/m γ/
(kN·m-3)c′/
kPaφ′/
(°)k/
(kPa·m-1)①填土 2.0 18.8 10 10.0 — ②1黏土 4.0 18.3 3 31.8 1.67×105 ③淤泥质粉质黏土 9.0 17.3 2 29.2 1.31×105 ④淤泥质黏土 17.5 16.7 2 24.5 1.27×105 ⑤1-1黏土 21.8 17.8 3 29.9 1.73×105 ⑤1-2粉质黏土 30.3 18.0 5 31.9 1.72×105 注:h为土层底部埋深;γ为总重度;c′为有效黏聚力;φ′为有效内摩擦角;k为侧向基床反力系数,按照林华国等[13]选取。 表 2 荷载组合模式表
Table 2 Load combinations used in structural analysis
名称 荷载组合 荷载模式1* 全覆盖土层竖向土压力、底部基地反力、
侧向主动土压力、结构自重、静水压力荷载模式2* 太沙基竖向土压力、底部基地反力、
侧向主动土压力、结构自重、静水压力荷载模式3 全覆盖土层竖向土压力、底部基地反力、
侧向主动土压力、结构自重、
静水压力、地层水平抗力注:*《顶管工程设计标准(DG/TJ 08—2268—2019)》推荐。 表 3 水土压力理论值与实测值
Table 3 Theoretical and measured values of water and earth pressures
测点 实测均值/
kPa误差百分比/% 模式1 模式2 模式3 顶部 265 -0.8 -14.7 -0.8 底部 292 0.3 -13.7 0.3 左肩 207 19.3 6.3 36.2 右肩 253 -5.2 -13.0 5.9 左腰 266 -8.6 -12.0 12.8 右腰 323 -24.8 -27.6 -7.1 左趾 301 -4.0 -12.3 2.0 右趾 307 -9.1 -14.0 0.2 注:误差百分比=(理论值-实测值)/实测值×100%。 表 4 弯矩理论值与实测值
Table 4 Theoretical and measured values of bending moment
测点 实测均值/
(kN·m)误差百分比/% 模式1 模式3 顶部 588 36.9 5.4 底部 679 15.5 -11.5 右肩 -419 1.2 1.7 右腰 -66 284.8 -106.1 左腰 -82 209.8 -104.9 左趾 -335 66.6 24.5 -
[1] 刘龙卫, 薛发亭, 刘常利. 三车道超大断面矩形顶管工程: 嘉兴市下穿南湖大道隧道[J]. 隧道建设(中英文), 2021, 41(9): 1612-1625, 后插1-后插14. LIU Longwei, XUE Fating, LIU Changli. Three-lane super-large section rectangular pipe-jacking tunnel underpassing Nanhu avenue in Jiaxing, China[J]. Tunnel Construction, 2021, 41(9): 1612-1625, Back inserts1-14. (in Chinese)
[2] 贾连辉. 超大断面矩形盾构顶管设计关键技术[J]. 隧道建设, 2014, 34(11): 1098-1106. JIA Lianhui. Key technologies for design of super-large rectangular pipe jacking machine[J]. Tunnel Construction, 2014, 34(11): 1098-1106. (in Chinese)
[3] 顶管工程设计标准: DG/TJ 08—2268—2019 J 14552—2019[S]. 上海: 同济大学出版社, 2019. Construction Design Code for Pipe Jacking: DG/TJ 08—2268—2019 J 14552—2019[S]. Shanghai: Tongji University Press, 2019. (in Chinese)
[4] 地基基础设计标准: DG/J 08—11—2018 J 11595—2018[S]. 上海: 同济大学出版社, 2019. Foundation Design Code: DG/J 08—11—2018 J 11595—2018[S]. Shanghai: Tongji University Press, 2019. (in Chinese)
[5] 矩形顶管工程技术规程: T/CECS 716—2020[S]. 北京: 中国建筑工业出版社, 2020. Technical Specification for Pipe Jacking Engineering with Rectangular Cross Section: T/CECS 716—2020[S]. Beijing, China Architecture & Building Press, 2020. (in Chinese)
[6] 杨仙, 张可能, 黎永索, 等. 深埋顶管顶力理论计算与实测分析[J]. 岩土力学, 2013, 34(3): 757-761. YANG Xian, ZHANG Keneng, LI Yongsuo, et al. Theoretical and experimental analyses of jacking force during deep-buried pipe jacking[J]. Rock and Soil Mechanics, 2013, 34(3): 757-761. (in Chinese)
[7] 林越翔, 彭立敏, 吴桂航, 等. 仿矩形顶管管壁摩阻力理论公式的探讨[J]. 现代隧道技术, 2017, 54(4): 180-185. LIN Yuexiang, PENG Limin, WU Guihang, et al. Discussion of a theoretical formula for the friction resistance of a pipe wall in quasi-rectangular pipe jacking[J]. Modern Tunnelling Technology, 2017, 54(4): 180-185. (in Chinese)
[8] 雷晗, 陈锦剑, 王建华, 等. 大直径砼顶管的管道受力特性分析[J]. 上海交通大学学报, 2011, 45(10): 1493-1497. LEI Han, CHEN Jinjian, WANG Jianhua, et al. Analysis on performance of large diameter concrete jacking pipe[J]. Journal of Shanghai Jiao Tong University, 2011, 45(10): 1493-1497. (in Chinese)
[9] ZHEN L, CHEN J J, QIAO P Z, et al. Analysis and remedial treatment of a steel pipe-jacking accident in complex underground environment[J]. Engineering Structures, 2014, 59: 210-219. doi: 10.1016/j.engstruct.2013.10.025
[10] 柳献, 焦伯昌, 潘伟强, 等. 大断面钢结构顶管纵向力时变规律研究[J]. 岩土工程学报, 2022, 44(10): 1810-1816. LIU Xian, JIAO Bochang), PAN Weiqiang, et al. Temporal variation laws of longitudinal stress of pipe jacking with large- section steel structure[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(10): 1810-1816. (in Chinese)
[11] 刘红波, 张国栋, 潘伟强, 等. 超大类矩形断面复合顶管施工力学性能研究[J]. 天津大学学报(自然科学与工程技术版), 2023, 56(11): 1115-1124. LIU Hongbo, ZHANG Guodong, PAN Weiqiang, et al. Study on mechanical properties of composite pipe jacking with a super-large rectangular section during construction[J]. Journal of Tianjin University (Science and Technology), 2023, 56(11): 1115-1124. (in Chinese)
[12] 潘伟强, 焦伯昌, 柳献. 大断面类矩形钢顶管结构受力性能现场试验研究: 以上海轨道交通14号线静安寺站顶管车站工程为例[J]. 隧道建设(中英文), 2022(6): 975-983. PAN Weiqiang, JIAO Bochang, LIU Xian. Mechanical behaviors of quasi-rectangular steel pipe jacking structure with large cross-section: a case study of Jing'an temple pipe jacking station on Shanghai metro line 14[J]. Tunnel Construction, 2022(6): 975-983. (in Chinese)
[13] 林华国, 唐世栋. 上海地区软土层侧向基床反力系数规律性研究[J]. 岩土工程学报, 2004, 26(4): 495-499. LIN Huaguo, TANG Shidong. Study on the horizontal coefficient of subgrade reaction for soft soil layers in Shanghai[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(4): 495-499. (in Chinese)
[14] 邓婷, 黄茂松, 时振昊, 等. 软黏土深埋矩形顶管施工地层变形分析[J]. 土木工程学报, 2023, 56(增刊2): 157-162. DENG Ting, HUANG Maosong, SHI Zhenhao, et al. Ground deformation response induced by jacking process of deep rectangular tunnel in soft clay[J]. China Civil Engineering Journal, 2023, 56(S2): 157-162. (in Chinese)
[15] 吴列成, 黄德中, 邱龑. 大断面矩形顶管法地铁车站施工沉降控制技术实践: 以上海轨道交通14号线静安寺站工程为例[J]. 隧道建设(中英文), 2021, 41(9): 1585-1593. WU Liecheng, HUANG Dezhong, QIU Yan. Settlement control technology in metro station construction with large cross-section rectangular pipe jacking method: a case study of Jing'an temple station of line No. 14 of Shanghai metro[J]. Tunnel Construction, 2021, 41(9): 1585-1593. (in Chinese)
[16] 日本土木学会. 日本土木学会隧道标准规范(盾构篇)及解说[M]. 朱伟, 译. 北京: 中国建筑工业出版社, 2001. Japan Society of Civil Engineers. Japanese Standard for Shield Tunneling[M]. ZHU Wei, translator. Beijing: China Architecture & Building Press, 2001. (in Chinese)
[17] 王卫东, 王浩然, 徐中华. 基坑开挖数值分析中土体硬化模型参数的试验研究[J]. 岩土力学, 2012, 33(8): 2283-2290. WANG Weidong, WANG Haoran, XU Zhonghua. Experimental study of parameters of hardening soil model for numerical analysis of excavations of foundation pits[J]. Rock and Soil Mechanics, 2012, 33(8): 2283-2290. (in Chinese)
[18] CHEN K H, PENG F L. An improved method to calculate the vertical earth pressure for deep shield tunnel in Shanghai soil layers[J]. Tunnelling and Underground Space Technology, 2018, 75: 43-66.
-
期刊类型引用(1)
1. 许建堂. 不同因素对堆石坝地基防渗墙应力应变影响分析. 水利科技与经济. 2023(06): 11-15 . 百度学术
其他类型引用(0)
-
其他相关附件