Processing math: 100%
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

考虑桩岩界面体积剪缩的灌注桩竖向荷载传递解析解

杨凯旋, 赵衡, 赵明华, 加武荣, 华旭刚

杨凯旋, 赵衡, 赵明华, 加武荣, 华旭刚. 考虑桩岩界面体积剪缩的灌注桩竖向荷载传递解析解[J]. 岩土工程学报, 2025, 47(6): 1229-1238. DOI: 10.11779/CJGE20240112
引用本文: 杨凯旋, 赵衡, 赵明华, 加武荣, 华旭刚. 考虑桩岩界面体积剪缩的灌注桩竖向荷载传递解析解[J]. 岩土工程学报, 2025, 47(6): 1229-1238. DOI: 10.11779/CJGE20240112
YANG Kaixuan, ZHAO Heng, ZHAO Minghua, JIA Wurong, HUA Xugang. Analytical solution for vertical load transfer of cast-in-place piles considering shear-induced volumetric contraction across shaft-rock joints[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(6): 1229-1238. DOI: 10.11779/CJGE20240112
Citation: YANG Kaixuan, ZHAO Heng, ZHAO Minghua, JIA Wurong, HUA Xugang. Analytical solution for vertical load transfer of cast-in-place piles considering shear-induced volumetric contraction across shaft-rock joints[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(6): 1229-1238. DOI: 10.11779/CJGE20240112

考虑桩岩界面体积剪缩的灌注桩竖向荷载传递解析解  English Version

基金项目: 

国家自然科学基金项目 51978255

详细信息
    作者简介:

    杨凯旋(1994—),男,陕西商洛人,博士,主要从事桩基础及岩石节理剪切等方面的研究工作。E-mail: ykx@hnu.edu.cn

    通讯作者:

    赵衡, E-mail: henrychiu@hnu.edu.cn

  • 中图分类号: TU43

Analytical solution for vertical load transfer of cast-in-place piles considering shear-induced volumetric contraction across shaft-rock joints

  • 摘要: 当钻孔灌注桩深入软岩地层时,其竖向荷载传递行为与桩岩界面的粗糙度具有高度相关性,具体表现为孔壁与桩身的接触面在荷载作用下错动而剪胀并引起侧向约束(法向应力)的增加。现有基于Patton模型及其广义模型的桩岩界面建模方法可较好地模拟峰前剪胀过程中法向应力的增长过程;但其忽略了一个重要事实:当剪胀达到一定程度时,孔壁粗糙体将由于局部应力增加而破坏,此时由于剪胀过程所积蓄的系统内能将随粗糙体的断裂或破坏被迅速释放,在宏观上表现为桩岩界面的体积剪缩并引起法向应力的减小。为此,综合已有室内试验的观测结果并基于单边受压楔体的上限解,确定出三角形粗糙体破坏时将分离出一个新的三角形岩屑并沿着本文定义的剪缩角斜向滑动。在考虑粗糙体几何特征和运动学原理的基础上,利用能量准则求解了剪缩角以及峰后剪缩过程中的滑动摩擦力。随后,修正了已有的界面剪切模型并利用室内直剪试验的结果验证了桩岩界面剪切全过程的应力-位移预测曲线,并据此得到基桩竖向荷载传递解析解。参数分析表明半波长、剪胀角和岩石内摩擦角是影响剪缩角和单位侧阻力发挥的主要因素。
    Abstract: In soft rock strata, the vertical load transfer behavior of cast-in-place piles is significantly influenced by the roughness of shaft-rock joints. It is particularly pronounced at the interface between the shaft and the surrounding rock, where dislocations occur under loads, leading to shear dilation and an increase in the lateral constraint (normal stress). The existing models, such as the Patton's model and its generalized form, can well predict the normal stress at the pre-peak, but they ignore a critical aspect: in specific, the potential destruction of the asperity when shear dilation reaches the critical state due to increasing local stress, leading to the rapid release of accumulated energy. This destruction is macroscopically represented as the volume shear contraction of the shaft-rock joints, causing a decrease in the normal stress. This study identifies that a newborn debris will be separated from the original rock asperity and obliquely slides after the asperity fails based on the upper-bound solution of a unilaterally compressed wedge and the existing laboratory observations. Considering the kinematic principles, the energy principle is used to determine the shear contraction angle and the sliding resistance at the post-peak. The modified shear model is verified using the observations of the existing direct shear tests. On this basis, the analytical solutions for the distribution of axial force are obtained. The parameter studies reveal that the half chord-length, shear dilation inclination and internal friction angle of rock have a strong impact on the shear contraction angle and unit shaft resistance.
  • 图  1   灌注桩桩岩界面粗糙体破坏前后体积变化示意图

    Figure  1.   Sketch of volumetric change of asperity of shaft-rock joints at pre-failure and post-failure stages

    图  2   混凝土-岩石粗糙体峰前剪胀和峰后剪缩阶段运动学机制

    Figure  2.   Kinematics sketch of concrete-rock asperity at pre-peak shear-dilation and post-peak shear-contraction stages

    图  3   剥离楔体与软岩粗糙体基座几何示意图

    Figure  3.   Geometric sketch of potential newborn scrap on remaining asperity

    图  4   剪应力模型预测结果与实测结果对比

    Figure  4.   Comparison of shear stress among proposed, experimental and existing solutions

    图  5   桩身荷载传递计算简图

    Figure  5.   Calculation of shaft load transfer

    图  6   桩身轴力分布试验值与理论值对比

    Figure  6.   Comparison of axial load distributions between proposed solutions and experimental observations

    图  7   泥质页岩地层桩身轴力分布试验值与理论值对比

    Figure  7.   Comparison of axial load distributions between proposed solutions and experimental observations of clay shale

    图  8   界面粗糙体几何参数与抗剪强度指标对剪缩角的影响

    Figure  8.   Effects of roughness parameters and shear strength parameters of asperity on shear contraction angle

    图  9   粗糙体半波长和剪胀角对单位侧阻力发挥的影响

    Figure  9.   Effects of half chord-length and shear dilation inclination of asperity on mobilization of unit shaft resistances

    图  10   软岩内摩擦角和黏聚力对单位侧阻力发挥的影响

    Figure  10.   Effects of internal friction angle and cohesive of soft rock on mobilization of unit shaft resistances

    表  1   文献[19]工程案例软岩材料参数

    Table  1   Related parameters of soft rock

    弹性模量Er/MPa 泊松比νr 黏聚力cr/kPa 内摩擦角φr/(°) 界面基本摩擦角φb/(°) 半波长λ/mm 剪胀角θ/(°)
    2000 0.25 200 25 35 2 15
    下载: 导出CSV

    表  2   文献[20]泥质页岩材料参数

    Table  2   Related parameters of clay shale

    弹性模量Er/MPa 泊松比νr 黏聚力cr/kPa 内摩擦角φr/(°) 界面基本摩擦角φb/(°) 半波长λ/mm 剪胀角θ/(°)
    232 0.3 1200 24.8 30 8 10
    下载: 导出CSV
  • [1] 宋随弟, 彭雄志, 杨泉, 等. 超大直径嵌岩桩基础竖向受荷性状研究[J]. 铁道工程学报, 2023, 40(2): 41-46, 105.

    SONG Suidi, PENG Xiongzhi, YANG Quan, et al. Research on the characters of super-large diameter rock-socketed pile foundation under vertical load[J]. Journal of Railway Engineering Society, 2023, 40(2): 41-46, 105. (in Chinese)

    [2] 何思明, 卢国胜. 嵌岩桩荷载传递特性研究[J]. 岩土力学, 2007, 28(12): 2598-2602. doi: 10.3969/j.issn.1000-7598.2007.12.022

    HE Siming, LU Guosheng. Study on load transfer characteristic of rock-socketed pole[J]. Rock and Soil Mechanics, 2007, 28(12): 2598-2602. (in Chinese) doi: 10.3969/j.issn.1000-7598.2007.12.022

    [3] 刘松玉, 季鹏, 韦杰. 大直径泥质软岩嵌岩灌注桩的荷载传递性状[J]. 岩土工程学报, 1998, 20(4): 58-61. https://cge.nhri.cn/article/id/10164

    LIU Songyu, JI Peng, WEI Jie. Load transfer behavior of large diameter cast in place pile embedded in soft rock[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(4): 58-61. (in Chinese) https://cge.nhri.cn/article/id/10164

    [4] 梁晋渝, 史佩栋. 嵌岩桩竖向承载力的研究[J]. 岩土工程学报, 1994, 16(4): 32–39. https://cge.nhri.cn/article/id/9786

    LIANG Jinyu, SHI Peidong. Study of vertical bearing capacity of socketed piles[J]. Chinese Journal of Geotechnical Engineering, 1994, 16(4): 32–39. (in Chinese) https://cge.nhri.cn/article/id/9786

    [5] 龚成中, 龚维明, 何春林, 等. 孔壁粗糙度对深嵌岩桩承载特性的影响[J]. 中国公路学报, 2011, 24(2): 56-61.

    GONG Chengzhong, GONG Weiming, HE Chunlin, et al. Influence of hole side roughness on bearing characteristic of deep rock-socketed pile[J]. China Journal of Highway and Transport, 2011, 24(2): 56-61. (in Chinese)

    [6] 赵明华, 雷勇, 刘晓明. 基于桩-岩结构面特性的嵌岩桩荷载传递分析[J]. 岩石力学与工程学报, 2009, 28(1): 103-110.

    ZHAO Minghua, LEI Yong, LIU Xiaoming. Analysis of load transfer of rock-socketed piles based on characteristics of pile-rock structural plane[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(1): 103-110. (in Chinese)

    [7] 邢皓枫, 孟明辉, 何文勇, 等. 基于结构面力学特性的嵌岩桩侧摩阻力分布分析[J]. 岩土工程学报, 2012, 34(12): 2220-2227. https://cge.nhri.cn/article/id/14953

    XING Haofeng, MENG Minghui, HE Wenyong, et al. Distribution of shaft resistance of rock-socketed piles based on mechanical properties of pile-rock interface[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(12): 2220-2227. (in Chinese) https://cge.nhri.cn/article/id/14953

    [8]

    JOHNSTON I W, LAM T S K. Shear behavior of regular triangular concrete/rock joints-analysis[J]. Journal of Geotechnical Engineering, 1989, 115(5): 711-727.

    [9]

    PATTON F D. Multiple modes of shear failure in rock[C]// Proceeding 1st Congress International Rock Mechanics, Lisbon, 1966: 509-513.

    [10] 赵明华, 夏润炎, 尹平保, 等. 考虑软岩剪胀效应的嵌岩桩荷载传递机理分析[J]. 岩土工程学报, 2014, 36(6): 1005-1011. doi: 10.11779/CJGE201406003

    ZHAO Minghua, XIA Runyan, YIN Pingbao, et al. Load transfer mechanism of socketed piles considering shear dilation effects of soft rock[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(6): 1005-1011. (in Chinese) doi: 10.11779/CJGE201406003

    [11]

    ZHAO H, HOU J C, ZHANG L, et al. Towards concrete-rock interface shear containing similar triangular asperities[J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 137: 104547.

    [12] 赵衡, 侯继超, 赵明华. 岩石-混凝土结构面的广义Patton剪切模型[J]. 岩土工程学报, 2022, 44(11): 2106-2114. doi: 10.11779/CJGE202211017

    ZHAO Heng, HOU Jichao, ZHAO Minghua. Generalized Patton shear model for rock-concrete joints[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(11): 2106-2114. (in Chinese) doi: 10.11779/CJGE202211017

    [13]

    LIU Y N, ZHAO H, ZHAO M H, et al. Laboratory and theoretical study for concrete-mudstone interface shear to account for asperity degradation[J]. Environmental Earth Sciences, 2021, 81(1): 1-16.

    [14]

    YANG K X, HU Q, ZHAO H, et al. Numerical study on the shear behavior of concrete-rock joints with similar triangular asperities[J]. Computers and Geotechnics, 2023, 159: 105468.

    [15]

    SEIDEL J P, HABERFIELD C M. A theoretical model for rock joints subjected to constant normal stiffness direct shear[J]. International Journal of Rock Mechanics and Mining Sciences, 2002, 39(5): 539-553.

    [16]

    HOU J C, ZHAO H, PENG W Z, et al. A limit solution for predicting side resistance on rock-socketed piles[J]. Journal of Engineering Mechanics, 2022, 148(1): 04021131.

    [17]

    JOHNSTON I W, LAM T S K, WILLIAMS A F. Constant normal stiffness direct shear testing for socketed pile design in weak rock[J]. Géotechnique, 1987, 37(1): 83-89.

    [18]

    ZHAO H, XIAO Y, ZHAO M H, et al. On behavior of load transfer for drilled shafts embedded in weak rocks[J]. Computers and Geotechnics, 2017, 85: 177-185.

    [19] 周韬, 王星华, 巢万里. 大直径嵌岩桩的承载性状[J]. 湖南交通科技, 2006, 32(4): 85-87.

    ZHOU Tao, WANG Xinghua, CHAO Wanli. Supporting capacity behavior of large diameter rock-socketed piles[J]. Hunan Communication Science and Technology, 2006, 32(4): 85-87. (in Chinese)

    [20]

    O'NEILL M W, TOWNSEND F C, HASSAN K M, et al. Load Transfer for Drilled Shafts in Intermediate Geomaterials[R]. HWA-RD-95-172, McLean, Va: Federal Highway Administration, 1996: 141-157.

  • 期刊类型引用(3)

    1. 朱赛男,陈凯江,李伟华. 水下双层衬砌隧道对平面SV波散射问题的解. 西安建筑科技大学学报(自然科学版). 2023(02): 217-226 . 百度学术
    2. 王立新,范飞飞,汪珂,李储军,姚崇凯,甘露. 地铁车站不同减震层的减震机理及性能分析. 铁道标准设计. 2022(05): 131-139 . 百度学术
    13. 朱辉,严松宏,孙纬宇,欧尔峰,林峻岑,汪精河. 地震波斜入射下浅埋偏压双隧道地震响应分析. 振动.测试与诊断. 2024(02): 259-265+407 . 百度学术

    其他类型引用(13)

图(10)  /  表(2)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 16
出版历程
  • 收稿日期:  2024-02-01
  • 网络出版日期:  2024-06-18
  • 刊出日期:  2025-05-31

目录

    /

    返回文章
    返回