Tests on object motion in centrifugal hypergravity field and analysis of rainfall simulation
-
摘要: 离心机是岩土工程学科开展缩尺模型试验的主要装置,被广泛应用于降雨、滑坡等工程问题。开展了一系列无约束小球运动离心试验,基于双目立体视觉原理还原小球轨迹并验证了离心超重力下质点运动的控制方程。在此基础上对离心降雨模拟进行数值分析并提出4项降雨均匀性指标。分析表明,质量变化与非惯性系耦合作用会使得物体受到一项额外的作用力。离心超重力下the Green Mist喷嘴模拟的降雨的空间和统计分布特征会在空气阻力和非惯性系作用下发生显著改变。降雨均匀性指标对于确定喷嘴阵列布置具有指导意义,以研究工况为例,2×2的the Green Mist喷嘴阵列沿边坡长度和宽度方向的喷嘴覆盖面积重叠率的推荐值分别为60.47%,55.36%。Abstract: Centrifuges are the main devices to conduct scaled model tests in the geotechnical engineering discipline, which are widely used in engineering problems such as rainfall and landslides. In this study, a series of centrifugal tests on the motion of unconstrained spheres are carried out. The trajectories of the spheres are reconstructed based on the binocular stereo vision to verify the equations for particle motion in centrifugal hypergravity proposed by Ling et al. On this basis, the numerical analysis is conducted on centrifugal rainfall simulation, and four rainfall uniformity indexes are proposed. It is shown that the coupling of mass changes and non-inertial frame will result in an additional force acting on the object. The spatial and statistical distribution characteristics of rainfall from the Green Mist nozzle can be significantly changed by air resistance and the non-inertial frame forces. The rainfall uniformity indexes have guiding significance for determining the layout of nozzle arrays. Taking the research conditions in this study as an example, for the 2×2 Green Mist nozzle array, the recommended values of the overlap of nozzle coverage area along the length and width directions of the side slope are 60.47% and 55.36%, respectively.
-
Keywords:
- non-inertial frame effect /
- centrifuge /
- rainfall simulation /
- uniformity
-
-
表 1 降雨数值模拟参数
Table 1 Parameters for numerical simulation of rainfall
参数 值 雨滴数量 20200 最大喷射角/(°) 59 喷射速度/(m·s-1) 18 速度标准差/(m·s-1) 0.18 雨滴直径范围/m (40~350)×10-6 雨滴平均直径/m 121×10-6 蒸发参数k1/() 115×10-12 离心机有效半径R/m 4.5 模型箱高度h/m 1 离心加速度/g 50 -
[1] CHEN Y M, TANG Y, LING D S, et al. Hypergravity experiments on multiphase media evolution[J]. Science China Technological Sciences, 2022, 65(12): 2791-2808. doi: 10.1007/s11431-022-2125-x
[2] NG C W W. The state-of-the-art centrifuge modelling of geotechnical problems at HKUST[J]. Journal of Zhejiang University-Science A: Applied Physics & Engineering, 2014, 15(1): 1-21.
[3] BYRNE P M, PARK S S, BEATY M, et al. Numerical modeling of liquefaction and comparison with centrifuge tests[J]. Canadian Geotechnical Journal, 2004, 41(2): 193-211. doi: 10.1139/t03-088
[4] MANZARI M T, GHORAIBY M E, KUTTER B L, et al. Liquefaction experiment and analysis projects (LEAP): Summary of observations from the planning phase[J]. Soil Dynamics and Earthquake Engineering, 2018, 113: 714-743. doi: 10.1016/j.soildyn.2017.05.015
[5] 马立秋, 张建民, 张武. 爆炸离心模型试验研究进展与展望[J]. 岩土力学, 2011, 32(9): 2827-2833. doi: 10.3969/j.issn.1000-7598.2011.09.044 MA Liqiu, ZHANG Jianmin, ZHANG Wu. Development and prospect for centrifugal blasting modeling[J]. Rock and Soil Mechanics, 2011, 32(9): 2827-2833. (in Chinese) doi: 10.3969/j.issn.1000-7598.2011.09.044
[6] 周健, 杜强, 李业勋, 等. 无黏性土滑坡型泥石流形成机理的离心机模型试验研究[J]. 岩土工程学报, 2014, 36(11): 2010-2017. doi: 10.11779/CJGE201411006 ZHOU Jian, DU Qiang, LI Yexun, et al. Centrifugal model tests on formation mechanism of landslide-type debris flows of cohesiveless soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(11): 2010-2017. (in Chinese) doi: 10.11779/CJGE201411006
[7] XU J W, UEDA K, UZUOKA R. Evaluation of failure of slopes with shaking-induced cracks in response to rainfall[J]. Landslides, 2022, 19(1): 119-136. doi: 10.1007/s10346-021-01734-1
[8] TAYLOR R N. Centrifuges in Modeling: Principles and Scale Effects[M]// Geotechnical Centrifuge Technology. London: CRC Press, 2018: 19-33.
[9] SCHOFIELD A N. Cambridge geotechnical centrifuge operations[J]. Géotechnique, 1980, 30(3): 227-268. doi: 10.1680/geot.1980.30.3.227
[10] TOBITA T, ASHINO T, REN J, et al. Kyoto University LEAP-GWU-2015 tests and the importance of curving the ground surface in centrifuge modelling[J]. Soil Dynamics and Earthquake Engineering, 2018, 113: 650-662. doi: 10.1016/j.soildyn.2017.10.012
[11] 王永志, 王海, 袁晓铭, 等. 土工离心试验应力相似差异特征与设计准则[J]. 岩土工程学报, 2018, 40(11): 2148-2154. doi: 10.11779/CJGE201811023 WANG Yongzhi, WANG Hai, YUAN Xiaoming, et al. Difference characteristics of stress similitude for geotechnical centrifuge modelling and design criteria[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(11): 2148-2154. (in Chinese) doi: 10.11779/CJGE201811023
[12] LEI G, SHI J. Physical meanings of kinematics in centrifuge modelling technique[J]. Rock and Soil Mechanics, 2003, 24(2): 188-193. doi: 10.3969/j.issn.1000-7598.2003.02.008
[13] 凌道盛, 施昌宇, 郑建靖, 等. 离心模型试验物质运动非惯性系效应[J]. 岩土工程学报, 2021, 43(2): 226-235. doi: 10.11779/CJGE202102002 LING Daosheng, SHI Changyu, ZHENG Jianjing, et al. Non-inertial effects on matter motion in centrifugal model tests[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(2): 226-235. (in Chinese) doi: 10.11779/CJGE202102002
[14] ITOH K, TOYOSAWA Y, KUSAKABE O. Centrifugal modelling of rockfall events[J]. International Journal of Physical Modelling in Geotechnics, 2009, 9(2): 1-22. doi: 10.1680/ijpmg.2009.090201
[15] CAICEDO B. Mathematical and physical modelling of rainfall in centrifuge[J]. International Journal of Physical Modelling in Geotechnics, 2015, 15(3): 150-164. doi: 10.1680/jphmg.14.00023
[16] 陈云敏, 韩超, 凌道盛, 等. ZJU400离心机研制及其振动台性能评价[J]. 岩土工程学报, 2011, 33(12): 1887-1894. https://cge.nhri.cn/article/id/14444 CHEN Yunmin, HAN Chao, LING Daosheng, et al. Development of geotechnical centrifuge ZJU400 and performance assessment of its shaking table system[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(12): 1887-1894. (in Chinese) https://cge.nhri.cn/article/id/14444
[17] ZHAO S, KANG F, LI J. Displacement monitoring for slope stability evaluation based on binocular vision systems[J]. Optik, 2018, 171: 658-671. doi: 10.1016/j.ijleo.2018.06.097
[18] LI H, WU H, LOU L, et al. Ping-pong robotics with high-speed vision system[C]// Control Automation Robotics & Vision (ICARCV), Guangzhou, 2012, IEEE: 106-111.
[19] CAICEDO B, TRISTANCHO J. A virtual rain simulator for droplet transport in a centrifuge[C]// Proceedings of the 7th International Conference on Physical Modelling in Geotechnics (ICPMG), Zurich, 2010.
[20] CHENG C H, CHOW C L, CHOW W K. Trajectories of large respiratory droplets in indoor environment: A simplified approach[J]. Building and Environment, 2020, 183: 107196. doi: 10.1016/j.buildenv.2020.107196
[21] SIDAHMED M M, TAHER M D, BROWN R B. A virtual nozzle for simulation of spray generation and droplet transport[J]. Biosystems Engineering, 2005, 92(3): 295-307. doi: 10.1016/j.biosystemseng.2005.07.012
[22] 刘小川. 降雨诱发非饱和土边坡浅层失稳离心模型试验及分析方法[D]. 杭州: 浙江大学, 2017. LIU Xiaochuan. Centrifugal Model Test and Analysis Method of Shallow Instability of Unsaturated Soil Slope Induced by Rainfall[D]. Hangzhou: Zhejiang University, 2017. (in Chinese)
[23] ZHANG G, QIAN J, WANG R, et al. Centrifuge model test study of rainfall-induced deformation of cohesive soil slopes[J]. Soils and Foundations, 2011, 51(2): 297-305. doi: 10.3208/sandf.51.297
[24] WANG S, IDINGER G. A device for rainfall simulation in geotechnical centrifuges[J]. Acta Geotech, 2021, 16: 2887-2898. doi: 10.1007/s11440-021-01186-w
[25] BHATTACHERJEE D, VISWANADHAM B V. Design and performance of an in-flight rainfall simulator in a geotechnical centrifuge[J]. Geotechnical Testing Journal, 2018, 41(1): 72-91. doi: 10.1520/GTJ20160254
[26] SERIO M A, CAROLLO F G, FERRO V. Raindrop size distribution and terminal velocity for rainfall erosivity studies: A review[J]. Journal of Hydrology, 2019, 576: 210-228. doi: 10.1016/j.jhydrol.2019.06.040
[27] CHEN Y, IRFAN M, UCHIMURA T, et al. Development of elastic wave velocity threshold for rainfall-induced landslide prediction and early warning[J]. Landslides, 2019, 16(5): 955-968. doi: 10.1007/s10346-019-01138-2
[28] HUNG W Y, TRAN M C, YEH F H, et al. Centrifuge modeling of failure behaviors of sandy slope caused by gravity, rainfall, and base shaking[J]. Engineering Geology, 2020, 271: 105609. doi: 10.1016/j.enggeo.2020.105609
[29] MOORE I D, HIRSCHI M C, BARFIELD B J. Kentucky rainfall simulator[J]. Transactions of the Asae, 1983, 26(4): 1085-1089. doi: 10.13031/2013.34081
[30] BLANQUIES J, SCHARFF M, HALLOCK B. The design and construction of a rainfall simulator[C]// Int Eros Control Assoc, (IECA), 2003 34th Annu Conf Expo, Las Vegas, 2003.
[31] HORNE M A. Design and Construction of A Rainfall Simulator for Large-Scale Testing of Erosion Control Practices and Products[D]. Alabama: Auburn University, 2017.
[32] CHRISTIANSEN J E. Irrigation by Sprinkling[M]. Berkeley: University of California, 1942.
[33] GRISSO R, ASKEW S, MCCALL D. Nozzles: selection and sizing[J]. Virginia Cooperative Extension, 2019, 442(32): 1-10.
-
其他相关附件