• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

离心超重力下物质运动试验及降雨模拟分析

凌道盛, 施昌宇, 郑建靖, 闫子壮, 赵天浩, 赵宇

凌道盛, 施昌宇, 郑建靖, 闫子壮, 赵天浩, 赵宇. 离心超重力下物质运动试验及降雨模拟分析[J]. 岩土工程学报, 2025, 47(6): 1132-1141. DOI: 10.11779/CJGE20240046
引用本文: 凌道盛, 施昌宇, 郑建靖, 闫子壮, 赵天浩, 赵宇. 离心超重力下物质运动试验及降雨模拟分析[J]. 岩土工程学报, 2025, 47(6): 1132-1141. DOI: 10.11779/CJGE20240046
LING Daosheng, SHI Changyu, ZHENG Jianjing, YAN Zizhuang, ZHAO Tianhao, ZHAO Yu. Tests on object motion in centrifugal hypergravity field and analysis of rainfall simulation[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(6): 1132-1141. DOI: 10.11779/CJGE20240046
Citation: LING Daosheng, SHI Changyu, ZHENG Jianjing, YAN Zizhuang, ZHAO Tianhao, ZHAO Yu. Tests on object motion in centrifugal hypergravity field and analysis of rainfall simulation[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(6): 1132-1141. DOI: 10.11779/CJGE20240046

离心超重力下物质运动试验及降雨模拟分析  English Version

基金项目: 

国家自然科学基金基础科学中心项目 51988101

详细信息
    作者简介:

    凌道盛(1968—),男,教授,主要从事土动力学、计算土力学方面的研究工作。E-mail: dsling@zju.edu.cn

    通讯作者:

    郑建靖, E-mail: zhengjianjing@zju.edu.cn

  • 中图分类号: TU411

Tests on object motion in centrifugal hypergravity field and analysis of rainfall simulation

  • 摘要: 离心机是岩土工程学科开展缩尺模型试验的主要装置,被广泛应用于降雨、滑坡等工程问题。开展了一系列无约束小球运动离心试验,基于双目立体视觉原理还原小球轨迹并验证了离心超重力下质点运动的控制方程。在此基础上对离心降雨模拟进行数值分析并提出4项降雨均匀性指标。分析表明,质量变化与非惯性系耦合作用会使得物体受到一项额外的作用力。离心超重力下the Green Mist喷嘴模拟的降雨的空间和统计分布特征会在空气阻力和非惯性系作用下发生显著改变。降雨均匀性指标对于确定喷嘴阵列布置具有指导意义,以研究工况为例,2×2的the Green Mist喷嘴阵列沿边坡长度和宽度方向的喷嘴覆盖面积重叠率的推荐值分别为60.47%,55.36%。
    Abstract: Centrifuges are the main devices to conduct scaled model tests in the geotechnical engineering discipline, which are widely used in engineering problems such as rainfall and landslides. In this study, a series of centrifugal tests on the motion of unconstrained spheres are carried out. The trajectories of the spheres are reconstructed based on the binocular stereo vision to verify the equations for particle motion in centrifugal hypergravity proposed by Ling et al. On this basis, the numerical analysis is conducted on centrifugal rainfall simulation, and four rainfall uniformity indexes are proposed. It is shown that the coupling of mass changes and non-inertial frame will result in an additional force acting on the object. The spatial and statistical distribution characteristics of rainfall from the Green Mist nozzle can be significantly changed by air resistance and the non-inertial frame forces. The rainfall uniformity indexes have guiding significance for determining the layout of nozzle arrays. Taking the research conditions in this study as an example, for the 2×2 Green Mist nozzle array, the recommended values of the overlap of nozzle coverage area along the length and width directions of the side slope are 60.47% and 55.36%, respectively.
  • 图  1   ZJU400土工离心机及试验模型布置

    Figure  1.   ZJU400 centrifuge and arrangement of model

    图  2   小球轨迹获取流程示意图

    Figure  2.   Scheme of acquisition of ball trajectory

    图  3   图像识别的小球位置

    Figure  3.   Scheme of vision processing for ball tracking

    图  4   空间坐标计算示意图

    Figure  4.   Diagram of calculating spatial coordinate

    图  5   离心机坐标系

    Figure  5.   Coordinate systems for a centrifuge

    图  6   10g第1组试验小球下落轨迹与理论轨迹的对比

    Figure  6.   Comparison between theoretical and experimental trajectories in the first set of tests with 10g

    图  7   试验和理论落点的相对偏移量

    Figure  7.   Relative offsets between theoretical and experimental impact points

    图  8   单喷嘴雨滴轨迹

    Figure  8.   Trajectories of raindrops from a single nozzle

    图  9   不同下落高度的雨滴落点分布

    Figure  9.   Impact points of raindrops at different fall heights

    图  10   雨滴速度、角度以及直径的统计分布

    Figure  10.   Statistical distribution of velocities, angles and diameters of raindrops

    图  11   不同喷射速度下的雨滴平均冲击速度

    Figure  11.   Average impact velocities of raindrops with different injection velocities

    图  12   2×2喷嘴阵列模拟降雨模型示意图

    Figure  12.   Schematic of simulation model for rainfall

    图  13   不同喷嘴阵列间距下的均匀性指标

    Figure  13.   Uniformity indexes of different spacings of nozzle array

    图  14   离心加速度对最佳重叠率的影响

    Figure  14.   Influences of centrifugal acceleration on optimal overlap ratio

    表  1   降雨数值模拟参数

    Table  1   Parameters for numerical simulation of rainfall

    参数
    雨滴数量 20200
    最大喷射角/(°) 59
    喷射速度/(m·s-1) 18
    速度标准差/(m·s-1) 0.18
    雨滴直径范围/m (40~350)×10-6
    雨滴平均直径/m 121×10-6
    蒸发参数k1/(μms2) 115×10-12
    离心机有效半径R/m 4.5
    模型箱高度h/m 1
    离心加速度/g 50
    下载: 导出CSV
  • [1]

    CHEN Y M, TANG Y, LING D S, et al. Hypergravity experiments on multiphase media evolution[J]. Science China Technological Sciences, 2022, 65(12): 2791-2808. doi: 10.1007/s11431-022-2125-x

    [2]

    NG C W W. The state-of-the-art centrifuge modelling of geotechnical problems at HKUST[J]. Journal of Zhejiang University-Science A: Applied Physics & Engineering, 2014, 15(1): 1-21.

    [3]

    BYRNE P M, PARK S S, BEATY M, et al. Numerical modeling of liquefaction and comparison with centrifuge tests[J]. Canadian Geotechnical Journal, 2004, 41(2): 193-211. doi: 10.1139/t03-088

    [4]

    MANZARI M T, GHORAIBY M E, KUTTER B L, et al. Liquefaction experiment and analysis projects (LEAP): Summary of observations from the planning phase[J]. Soil Dynamics and Earthquake Engineering, 2018, 113: 714-743. doi: 10.1016/j.soildyn.2017.05.015

    [5] 马立秋, 张建民, 张武. 爆炸离心模型试验研究进展与展望[J]. 岩土力学, 2011, 32(9): 2827-2833. doi: 10.3969/j.issn.1000-7598.2011.09.044

    MA Liqiu, ZHANG Jianmin, ZHANG Wu. Development and prospect for centrifugal blasting modeling[J]. Rock and Soil Mechanics, 2011, 32(9): 2827-2833. (in Chinese) doi: 10.3969/j.issn.1000-7598.2011.09.044

    [6] 周健, 杜强, 李业勋, 等. 无黏性土滑坡型泥石流形成机理的离心机模型试验研究[J]. 岩土工程学报, 2014, 36(11): 2010-2017. doi: 10.11779/CJGE201411006

    ZHOU Jian, DU Qiang, LI Yexun, et al. Centrifugal model tests on formation mechanism of landslide-type debris flows of cohesiveless soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(11): 2010-2017. (in Chinese) doi: 10.11779/CJGE201411006

    [7]

    XU J W, UEDA K, UZUOKA R. Evaluation of failure of slopes with shaking-induced cracks in response to rainfall[J]. Landslides, 2022, 19(1): 119-136. doi: 10.1007/s10346-021-01734-1

    [8]

    TAYLOR R N. Centrifuges in Modeling: Principles and Scale Effects[M]// Geotechnical Centrifuge Technology. London: CRC Press, 2018: 19-33.

    [9]

    SCHOFIELD A N. Cambridge geotechnical centrifuge operations[J]. Géotechnique, 1980, 30(3): 227-268. doi: 10.1680/geot.1980.30.3.227

    [10]

    TOBITA T, ASHINO T, REN J, et al. Kyoto University LEAP-GWU-2015 tests and the importance of curving the ground surface in centrifuge modelling[J]. Soil Dynamics and Earthquake Engineering, 2018, 113: 650-662. doi: 10.1016/j.soildyn.2017.10.012

    [11] 王永志, 王海, 袁晓铭, 等. 土工离心试验应力相似差异特征与设计准则[J]. 岩土工程学报, 2018, 40(11): 2148-2154. doi: 10.11779/CJGE201811023

    WANG Yongzhi, WANG Hai, YUAN Xiaoming, et al. Difference characteristics of stress similitude for geotechnical centrifuge modelling and design criteria[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(11): 2148-2154. (in Chinese) doi: 10.11779/CJGE201811023

    [12]

    LEI G, SHI J. Physical meanings of kinematics in centrifuge modelling technique[J]. Rock and Soil Mechanics, 2003, 24(2): 188-193. doi: 10.3969/j.issn.1000-7598.2003.02.008

    [13] 凌道盛, 施昌宇, 郑建靖, 等. 离心模型试验物质运动非惯性系效应[J]. 岩土工程学报, 2021, 43(2): 226-235. doi: 10.11779/CJGE202102002

    LING Daosheng, SHI Changyu, ZHENG Jianjing, et al. Non-inertial effects on matter motion in centrifugal model tests[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(2): 226-235. (in Chinese) doi: 10.11779/CJGE202102002

    [14]

    ITOH K, TOYOSAWA Y, KUSAKABE O. Centrifugal modelling of rockfall events[J]. International Journal of Physical Modelling in Geotechnics, 2009, 9(2): 1-22. doi: 10.1680/ijpmg.2009.090201

    [15]

    CAICEDO B. Mathematical and physical modelling of rainfall in centrifuge[J]. International Journal of Physical Modelling in Geotechnics, 2015, 15(3): 150-164. doi: 10.1680/jphmg.14.00023

    [16] 陈云敏, 韩超, 凌道盛, 等. ZJU400离心机研制及其振动台性能评价[J]. 岩土工程学报, 2011, 33(12): 1887-1894. https://cge.nhri.cn/article/id/14444

    CHEN Yunmin, HAN Chao, LING Daosheng, et al. Development of geotechnical centrifuge ZJU400 and performance assessment of its shaking table system[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(12): 1887-1894. (in Chinese) https://cge.nhri.cn/article/id/14444

    [17]

    ZHAO S, KANG F, LI J. Displacement monitoring for slope stability evaluation based on binocular vision systems[J]. Optik, 2018, 171: 658-671. doi: 10.1016/j.ijleo.2018.06.097

    [18]

    LI H, WU H, LOU L, et al. Ping-pong robotics with high-speed vision system[C]// Control Automation Robotics & Vision (ICARCV), Guangzhou, 2012, IEEE: 106-111.

    [19]

    CAICEDO B, TRISTANCHO J. A virtual rain simulator for droplet transport in a centrifuge[C]// Proceedings of the 7th International Conference on Physical Modelling in Geotechnics (ICPMG), Zurich, 2010.

    [20]

    CHENG C H, CHOW C L, CHOW W K. Trajectories of large respiratory droplets in indoor environment: A simplified approach[J]. Building and Environment, 2020, 183: 107196. doi: 10.1016/j.buildenv.2020.107196

    [21]

    SIDAHMED M M, TAHER M D, BROWN R B. A virtual nozzle for simulation of spray generation and droplet transport[J]. Biosystems Engineering, 2005, 92(3): 295-307. doi: 10.1016/j.biosystemseng.2005.07.012

    [22] 刘小川. 降雨诱发非饱和土边坡浅层失稳离心模型试验及分析方法[D]. 杭州: 浙江大学, 2017.

    LIU Xiaochuan. Centrifugal Model Test and Analysis Method of Shallow Instability of Unsaturated Soil Slope Induced by Rainfall[D]. Hangzhou: Zhejiang University, 2017. (in Chinese)

    [23]

    ZHANG G, QIAN J, WANG R, et al. Centrifuge model test study of rainfall-induced deformation of cohesive soil slopes[J]. Soils and Foundations, 2011, 51(2): 297-305. doi: 10.3208/sandf.51.297

    [24]

    WANG S, IDINGER G. A device for rainfall simulation in geotechnical centrifuges[J]. Acta Geotech, 2021, 16: 2887-2898. doi: 10.1007/s11440-021-01186-w

    [25]

    BHATTACHERJEE D, VISWANADHAM B V. Design and performance of an in-flight rainfall simulator in a geotechnical centrifuge[J]. Geotechnical Testing Journal, 2018, 41(1): 72-91. doi: 10.1520/GTJ20160254

    [26]

    SERIO M A, CAROLLO F G, FERRO V. Raindrop size distribution and terminal velocity for rainfall erosivity studies: A review[J]. Journal of Hydrology, 2019, 576: 210-228. doi: 10.1016/j.jhydrol.2019.06.040

    [27]

    CHEN Y, IRFAN M, UCHIMURA T, et al. Development of elastic wave velocity threshold for rainfall-induced landslide prediction and early warning[J]. Landslides, 2019, 16(5): 955-968. doi: 10.1007/s10346-019-01138-2

    [28]

    HUNG W Y, TRAN M C, YEH F H, et al. Centrifuge modeling of failure behaviors of sandy slope caused by gravity, rainfall, and base shaking[J]. Engineering Geology, 2020, 271: 105609. doi: 10.1016/j.enggeo.2020.105609

    [29]

    MOORE I D, HIRSCHI M C, BARFIELD B J. Kentucky rainfall simulator[J]. Transactions of the Asae, 1983, 26(4): 1085-1089. doi: 10.13031/2013.34081

    [30]

    BLANQUIES J, SCHARFF M, HALLOCK B. The design and construction of a rainfall simulator[C]// Int Eros Control Assoc, (IECA), 2003 34th Annu Conf Expo, Las Vegas, 2003.

    [31]

    HORNE M A. Design and Construction of A Rainfall Simulator for Large-Scale Testing of Erosion Control Practices and Products[D]. Alabama: Auburn University, 2017.

    [32]

    CHRISTIANSEN J E. Irrigation by Sprinkling[M]. Berkeley: University of California, 1942.

    [33]

    GRISSO R, ASKEW S, MCCALL D. Nozzles: selection and sizing[J]. Virginia Cooperative Extension, 2019, 442(32): 1-10.

图(14)  /  表(1)
计量
  • 文章访问数:  225
  • HTML全文浏览量:  27
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-14
  • 网络出版日期:  2024-05-10
  • 刊出日期:  2025-05-31

目录

    /

    返回文章
    返回