Processing math: 100%
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

黄土隧道围岩压力计算方法研究

罗彦斌, 陈浩, 陈建勋, 王传武

罗彦斌, 陈浩, 陈建勋, 王传武. 黄土隧道围岩压力计算方法研究[J]. 岩土工程学报, 2025, 47(6): 1210-1218. DOI: 10.11779/CJGE20240041
引用本文: 罗彦斌, 陈浩, 陈建勋, 王传武. 黄土隧道围岩压力计算方法研究[J]. 岩土工程学报, 2025, 47(6): 1210-1218. DOI: 10.11779/CJGE20240041
LUO Yanbin, CHEN Hao, CHEN Jianxun, WANG Chuanwu. Method for calculating pressure of surrounding rock in loess tunnels[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(6): 1210-1218. DOI: 10.11779/CJGE20240041
Citation: LUO Yanbin, CHEN Hao, CHEN Jianxun, WANG Chuanwu. Method for calculating pressure of surrounding rock in loess tunnels[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(6): 1210-1218. DOI: 10.11779/CJGE20240041

黄土隧道围岩压力计算方法研究  English Version

基金项目: 

国家自然科学基金项目 52278394

教育部长江学者奖励计划项目 Q2018209

中央高校基本科研业务费专项资金项目 300102213402

详细信息
    作者简介:

    罗彦斌(1980—),男,博士,教授,博士生导师,2003年毕业于长安大学隧道及地下工程专业,主要从事隧道与地下工程方面的教学与研究工作。E-mail:lyb@chd.edu.cn

    通讯作者:

    陈建勋, E-mail: chenjx1969@chd.edu.cn

  • 中图分类号: TU411

Method for calculating pressure of surrounding rock in loess tunnels

  • 摘要: 为了提出一种适用于黄土隧道的围岩压力计算方法,分析了黄土隧道围岩压力形成机理,依托大量围岩压力现场测试数据,提取了隧道围岩压力影响因子,探究了不同影响因子对黄土隧道围岩压力的影响敏感性及其变化规律,基于多因子耦合回归分析方法构造了围岩压力计算公式,采用样本包络度法结合试算法提出了考虑多影响因素的黄土隧道围岩压力计算方法。结果表明:黄土隧道围岩压力主要为形变压力,目前常用的基于松动理论的围岩压力计算方法不能真实反映黄土隧道的荷载情况;黄土隧道围岩压力受围岩级别影响明显,与隧道埋深、跨度和开挖高跨比具有较好的指数函数关系;与现有常用的太沙基公式、隧规公式以及卡柯公式对比,本文提出的计算公式对于黄土隧道围岩压力具有较好的包络度,且计算结果更接近于现场实测值。
    Abstract: To propose a calculation method for surrounding rock pressure applicable to loess tunnels, analyzed the formation mechanism of surrounding rock pressure in loess tunnels, based on a large amount of field test data of surrounding rock pressure, extracted the impact factors, explored the sensitivity and variation patterns of different impact factors on the surrounding rock pressure of loess tunnels, a calculation formula for surrounding rock pressure was constructed based on the multi-factor coupled regression analysis method, then, the method for calculating the surrounding rock pressure of loess tunnels considering multiple influencing factors was proposed by using the sample enveloped method combined with the trial algorithm. The results show that: The surrounding rock pressure in loess tunnels is the deformation pressure mainly, the methods used commonly for calculating the surrounding rock pressure based on the loosening theory cannot truly reflect the load situation of loess tunnels; The surrounding rock pressure in loess tunnels is affected significantly by the grade of surrounding rock, which has a good exponential function correlation with the burial depth, the span and the height-span ratio of excavation; Compared with the commonly used Terzaghi's formula, the formula of Code for Design of Tunnels, and the Caquot's formula, the formula proposed in this paper has a better envelope for the surrounding rock pressure of loess tunnels, and the calculation results are closer to the measured values.
  • 图  1   围岩位移支护特性曲线

    Figure  1.   Characteristic curve of support for surrounding rock displacement

    图  2   压力盒现场埋设情况

    Figure  2.   Site installation of pressure box

    图  3   围岩级别占比

    Figure  3.   Percentages of grades of surrounding rock

    图  4   隧道埋深占比

    Figure  4.   Percentages of tunnel depth

    图  5   隧道跨度占比

    Figure  5.   Percentages of tunnel span

    图  6   隧道开挖高度占比

    Figure  6.   Percentages of excavation height

    图  7   围岩压力测点布置及荷载模式分布

    Figure  7.   Arrangement of measuring points for pressure of surrounding rock and distribution of loading mode

    图  8   竖向围岩压力变化曲线(指数函数)

    Figure  8.   Curve of vertical pressure of surrounding rock with depth (exponential function)

    图  9   竖向围岩压力变化曲线(多项式函数)

    Figure  9.   Curve of vertical pressure of surrounding rock with depth (polynomial function)

    图  10   q/H与围岩级别关系

    Figure  10.   Relationship between q/H and rock grades

    图  11   竖向围岩压力随跨度变化曲线(幂函数)

    Figure  11.   Curve of vertical pressure of surrounding rock with span (power function)

    图  12   竖向围岩压力随跨度变化曲线(指数函数)

    Figure  12.   Curve of vertical pressure of surrounding rock with span (exponential function)

    图  13   竖向围岩压力随开挖高跨比变化曲线(指数函数)

    Figure  13.   Curve of vertical pressure of surrounding rock with height-span ratio of excavation (exponential function)

    图  14   竖向围岩压力随开挖高跨比变化曲线(线性函数)

    Figure  14.   Curve of vertical pressure of surrounding rock with height-span ratio of excavation (linear function)

    图  15   计算值与样本值对比

    Figure  15.   Comparison between calculated and sample values

    表  1   围岩压力计算值与实测值对比

    Table  1   Comparison between monitoring and calculated values of pressure of surrounding rock 单位: MPa

    线路
    名称
    监测断面数量 实测竖向围岩压力 隧规公式 太沙基公式 普氏公式 比尔鲍曼公式 全土柱公式
    计算值 相对
    误差
    计算值 相对
    误差
    计算值 相对
    误差
    计算值 相对
    误差
    计算值 相对
    误差
    吴子
    高速
    11个 0.045
    0.493
    0.105
    0.275
    0.06
    0.98
    0.098
    0.317
    0.02
    3.47
    0.228
    0.253
    0.02
    4.53
    0.119
    0.484
    0.02
    4.98
    0.135
    0.735
    0.16
    6.02
    神府
    高速
    3个 0.021
    0.051
    0.216
    0.350
    0.175
    0.322
    5.06
    6.95
    0.324
    0.331
    5.49 0.199
    0.411
    6.63
    8.05
    0.216
    0.465
    8.12
    8.82
    哈尔滨绕城
    高速
    4个 0.091
    0.159
    0.367
    0.417
    1.31
    2.53
    0.090
    0.328
    0.13
    2.47
    0.202
    0.336
    0.27
    2.69
    0.423
    0.451
    1.66
    3.96
    0.499
    0.588
    2.14
    5.03
    隰吉
    高速
    3个 0.026
    0.189
    0.046
    0.059
    0.11
    0.81
    0.350
    0.451
    1.02
    5.83
    0.156
    0.182
    0.16
    5.03
    0.575
    0.665
    2.11
    9.08
    0.888
    1.824
    3.70
    大西
    高铁
    2个 0.030
    0.062
    0.134 1.16
    3.47
    0.208 2.35
    5.93
    0.241 2.89 0.686 10.06 1.309
    黄延扩能高速 2个 0.015
    0.063
    0.406 0.386 5.13 0.338 4.37 0.519 7.24 0.668 9.60
    西宝
    高速
    5个 0.094
    0.320
    0.316
    0.479
    0.01
    2.36
    0.449
    0.570
    0.58
    4.65
    0.201
    0.21
    0.05
    1.15
    0.608
    0.808
    1.17
    7.02
    0.808
    1.477
    1.96
    11.57
    郑西
    高铁
    19个 0.055
    0.247
    0.117
    0.309
    0.02
    2.59
    0.147
    0.453
    0.08
    3.63
    0.204
    0.4
    0.11
    5.15
    0.146
    0.789
    0.51
    8.96
    0.155
    1.995
    0.60
    8.89
    宝兰
    客专
    3个 0.061
    0.395
    0.135
    0.138
    0.07
    1.21
    0.302
    0.533
    0.24
    3.95
    0.368
    0.826
    0.88
    5.03
    1.393
    1.470
    2.72
    8.41
    下载: 导出CSV

    表  2   国内外隧道围岩压力计算方法

    Table  2   Existing methods for pressure of surrounding rock of tunnel

    序号 计算方法 影响因子 计算形式 适用条件 围岩压力类型
    1 公路/铁路隧规 γBSHt 理论与经验结合 深埋,浅埋 松动压力
    2 水工隧规 γBHt 经验公式 深埋,浅埋
    3 全土柱理论公式 γH 理论解析 浅埋
    4 普氏理论公式 γBHtφ0 理论解析 深埋
    5 比尔鲍曼公式 γBHtHφ 理论解析 深埋
    6 太沙基理论公式 γBHtHφ0λ 理论解析 深埋,浅埋
    7 卡柯公式 rcφRpγ 理论解析 深埋,浅埋
    8 芬纳公式 rcφP0Rp 理论解析 深埋,浅埋 形变压力
    9 卡斯特纳公式 rcφP0Rp 理论解析 深埋,浅埋
    10 Barton Q值法 Q,Jr 经验公式 深埋,浅埋
    11 RMR值法 RMR,HB 经验公式 深埋
    12 综合经验公式 N0KDγ 理论解析 深埋
    注:表中γ为围岩重度,B为隧道跨度,S为围岩级别,Ht为隧道开挖高度,φ0为围岩计算摩擦角,H为隧道埋深,λ为侧压力系数,r为隧道半径,c为围岩黏聚力,φ为围岩内摩擦角,P0为初始地应力,Rp为围岩塑性区半径,Q、RMR为围岩综合指标,Jr为节理粗糙度系数,N0为围岩压力基本值,KD跨度修正系数。
    下载: 导出CSV

    表  3   竖向围岩压力随埋深拟合公式

    Table  3   Fitting formulae for vertical pressure of surrounding rock with depth

    拟合函数 拟合公式 相关系数
    指数函数 q=0.2192e-20.776/H 0.99
    多项式函数 q=98.746/H2+10.697H+0.3159 0.98
    下载: 导出CSV

    表  4   竖向围岩压力随跨度拟合公式

    Table  4   Fitting formulae for vertical pressure of surrounding rock with span

    拟合函数 拟合公式 相关系数
    幂函数 q=0.0031B1.303 0.96
    指数函数 q=0.0278e0.089B 0.97
    下载: 导出CSV

    表  5   竖向围岩压力随开挖高跨比拟合公式

    Table  5   Fitting formulae for vertical pressure of surrounding rock with height-span ratio of excavation

    拟合函数 拟合公式 相关系数
    指数函数 q=5.7×10-4e6.56Ht/B 0.83
    下载: 导出CSV

    表  6   黄土隧道围岩压力计算值与样本值对比

    Table  6   Comparison between calculated and sample values of deformation pressure of surrounding rock of loess tunnels

    序号 公式 样本值/计算值(IV级围岩) 样本值/计算值(V级围岩)
    系数α <1 >1 平均值 系数α <1 >1 平均值
    q=γH(1eα×(BHt+BH)) 0.76 96% 4% 0.17 1.026 100% 0 0.12
    q=bγcλtanφ(1eα×(BHt+BH)) 100% 0 0.19 90% 10% 0.34
    q=γH(1eα×BHt×BH) 100% 0 0.33 96% 4% 0.39
    q=bγcλtanφ(1eα×BHt×BH) 96% 4% 0.38 56% 44% 1.25
    下载: 导出CSV
  • [1] 陈建勋, 罗彦斌, 陈丽俊. 改写黄土隧道建设的历史[J]. 中国公路, 2019(11): 30-35.

    CHEN Jianxun, LUO Yanbin, CHEN Lijun. Rewriting the history of loess tunnel construction[J]. China Highway, 2019(11): 30-35. (in Chinese)

    [2] 王梦恕. 地下工程浅埋暗挖技术通论[M]. 合肥: 安徽教育出版社, 2005.

    WANG Mengshu. General Discussion on Shallow Buried and Underground Excavation Technology in Underground Engineering[M]. Hefei: Anhui Education Press, 2005. (in Chinese)

    [3] 关宝树. 隧道工程设计要点集[M]. 北京: 人民交通出版社, 2003.

    GUAN Baoshu. Key Points of Tunnel Engineering Design[M]. Beijing: China Communications Press, 2003. (in Chinese)

    [4] 谷兆祺, 彭守拙, 李仲奎. 地下洞室工程[M]. 北京: 清华大学出版社, 1994.

    GU Zhaoqi. Underground Cavern Engineering[M]. Beijing: Tsinghua University Press, 1994. (in Chinese)

    [5]

    KIM H J. Estimation for Tunnel Lining Loads[D]. Canada: University of Alberta, 1997.

    [6]

    TERZAGHI K. Theoretical Soil Mechanics[M]. J Wiley and Sons, inc., 1943: 195-202.

    [7] 铁路隧道设计规范: TB 10003—2016[S]. 北京: 中国铁道出版社, 2017.

    Code for Design of Railway Tunnel: TB 10003—2016[S]. Beijing: China Railway Publishing House, 2017. (in Chinese)

    [8] 公路隧道设计规范: JTG 3370.1—2018[S]. 北京: 人民交通出版社, 2018.

    Code for Design of Highway Tunnels: JTG 3370.1—2018[S]. Beijing: China Commuications Press, 2018. (in Chinese)

    [9] 谢家烋. 浅埋隧道的地层压力[J]. 土木工程学报, 1964(6): 58-70.

    XIE Jiaxiao. Formation pressure of shallow tunnel[J]. China Civil Engineering Journal, 1964(6): 58-70. (in Chinese)

    [10] 方正昌. 黄土洞室地层压力的统计分析[J]. 岩土工程学报, 1981, 3(1): 28-35.

    FANG Zhengchang. Statistical analysis of earth pressure on tunnel in loess[J]. Chinese Journal of Geotechnical Engineering, 1981, 3(1): 28-35. (in Chinese)

    [11] 王明年, 王志龙, 张霄, 等. 深埋隧道围岩压力计算方法研究[J]. 岩土工程学报, 2020, 42(1): 81-90.

    WANG Mingnian, WANG Zhilong, ZHANG Xiao, et al. Method for calculating deformation pressure of surrounding rock of deep-buried tunnels[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 81-90. (in Chinese)

    [12] 刘学增, 叶康. 山岭公路隧道围岩压力统计规律分析[J]. 岩土工程学报, 2011, 33(6): 890-895.

    LIU Xuezeng, YE Kang. Statistical analysis of surrounding rock pressure of mountain road tunnels[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(6): 890-895. (in Chinese)

    [13] 李鹏飞, 赵勇, 张顶立, 等. 基于现场实测数据统计的隧道围岩压力分布规律研究[J]. 岩石力学与工程学报, 2013, 32(7): 1392-1399.

    LI Pengfei, ZHAO Yong, ZHANG Dingli, et al. Study of distribution laws of tunnel surrounding rock pressure based on field measured data statistics[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(7): 1392-1399. (in Chinese)

    [14] 李鹏飞, 周烨, 伍冬. 隧道围岩压力计算方法及其适用范围[J]. 中国铁道科学, 2013, 34(6): 55-60.

    LI Pengfei, ZHOU Ye, WU Dong. Calculation methods for surrounding rock pressure and application scopes[J]. China Railway Science, 2013, 34(6): 55-60. (in Chinese)

    [15] 陈建勋, 姜久纯, 罗彦斌, 等. 黄土隧道洞口段支护结构的力学特性分析[J]. 中国公路学报, 2008, 21(5): 75-80.

    CHEN Jianxun, JIANG Jiuchun, LUO Yanbin, et al. Mechanics characteristic analysis of support structure of loess tunnel entrance[J]. China Journal of Highway and Transport, 2008, 21(5): 75-80. (in Chinese)

    [16]

    LUO Y B, CHEN J X, SHI Z, et al. Mechanical characteristics of primary support of large span loess highway tunnel: a case study in Shaanxi Province, Loess Plateau, NW China primary[J]. Tunnelling and Underground Space Technology, 2020, 104: 103532. doi: 10.1016/j.tust.2020.103532

    [17]

    LUO Y B, CHEN J X, GAO S T, et al. Stability analysis of super‑large‑section tunnel in loess ground considering water infiltration caused by irrigation[J]. Environment Earth Science, 2020, 76(22): 763.

    [18] 王明年, 郭军, 罗禄森, 等. 高速铁路大断面黄土隧道深浅埋分界深度研究[J]. 岩土力学, 2010, 31(4): 1157- 1162.

    WANG Mingnian, GUO Jun, LUO Lusen, et al. Study of critical buried depth of large cross-section loess tunnel for high speed railway[J]. Rock and Soil Mechanics, 2010, 31(4): 1157-1162. (in Chinese)

    [19] 赵勇, 李国良, 喻渝. 黄土隧道工程[M]. 北京: 中国铁道出版社, 2011.

    ZHAO Yong, LI Guoliang, YU Yu. Loess Tunnel Engineering[M]. Beijing: China Railway Publishing House, 2011. (in Chinese)

    [20] 韩兴博, 叶飞, 冯浩岚, 等. 深埋黄土盾构隧道围岩压力解析[J]. 岩土工程学报, 2021, 43(7): 1271-1278, 后插5.

    HAN Xingbo, YE Fei, FENG Haolan, et al. Pressure of surrounding rock of deep-buried loess shield tunnel[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(7): 1271-1278, 后插5. (in Chinese)

    [21] 朱汉华, 周小涵, 王䶮, 等. 隧道围岩与支护结构变形协调控制机理及工程应用[J]. 地下空间与工程学报, 2023, 19(1): 79-86, 94.

    ZHU Hanhua, ZHOU Xiaohan, WANG Yan, et al. Investigation on control mechanism of balanced and coordinated deformation of tunnel surrounding rock and application in engineering[J]. Chinese Journal of Underground Space and Engineering, 2023, 19(1): 79-86, 94. (in Chinese)

    [22] 孙钧. 岩石流变力学及其工程应用研究的若干进展[J]. 岩石力学与工程学报, 2007, 26(6): 1081-1106.

    SUN Jun. Rock rheological mechanics and its advance in engineering applications[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(6): 1081-1106. (in Chinese)

    [23] 张爱军, 白明洲, 许兆义, 等. 郑西客运专线铁路张茅隧道近饱和黄土体初期支护应力变形特征研究[J]. 岩石力学与工程学报, 2011, 30(增刊2): 3714-3720.

    ZHANG Aijun, BAI Mingzhou, XU Zhaoyi, et al. Study of stress and deformation characteristics of Zhangmao nearly saturated loess tunnel initial support of Zhengzhou—Xi'an passenger railway[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(S2): 3714-3720. (in Chinese)

    [24] 谭忠盛, 喻渝, 王明年, 等. 大断面黄土隧道中型钢与格栅适应性的对比试验[J]. 岩土工程学报, 2009, 31(4): 628-633.

    TAN Zhongsheng, YU Yu, WANG Mingnian, et al. Comparative tests on section steel and steel grid for loess tunnels with large section[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(4): 628-633. (in Chinese)

    [25] 杨建民, 喻渝, 谭忠盛, 等. 大断面深浅埋黄土隧道围岩压力试验研究[J]. 铁道工程学报, 2009, 125(2): 76-79.

    YANG Jianmin, YU Yu, TAN Zhongsheng, et al. Experimental research on the surrounding rock pressure of large sectional loess tunnel under deep and shallow submersion[J]. Journal of Railway Engineering Society, 2009, 125(2): 76-79. (in Chines)

    [26] 水工隧洞设计规范: NB/T 10391—2020[S]. 北京: 中国水利水电出版社, 2020.

    Code for Design of Hydraulic Tunnel: NB/T 10391—2020[S]. Beijing: China Water & Power Press, 2020. (in Chinese)

    [27] 重庆建筑工程学院. 岩石地下建筑结构[M]. 北京: 中国建筑工业出版社, 1982.

    Chongqing College of Construction Engineering. Rock Underground Building Structures[M]. Beijing: China Construction Industry Press, 1982. (in Chinese)

    [28]

    JIANG Y, YONEDA H, TANABASHI Y. Theoretical Estimation of loosening pressure on tunnels in soft rocks[J]. Tunnelling and Underground Space Technology, 2001(16): 99-105.

    [29]

    BHAWNI Singh, GOEL R K, JETHWA J L. Support pressure assessment in arched underground openings through poor rock masses[J]. Engineering Geology, 1997(48): 59-81.

    [30] 刘祖典. 黄土力学与工程[M]. 西安: 陕西科学技术出版社, 1997.

    LIU Zudian. Loess Mechanics and Engineering[M]. Xi'an: Shaanxi Science & Technology Press, 1997. (in Chinese)

    [31] 公路隧道施工技术规范: JTG/T 3660—2020[S]. 北京: 人民交通出版社, 2020.

    Technical Specifications for Construction of Highway Tunnel: JTG/T 3660—2020[S]. Beijing: China Communications Press, 2020. (in Chinese)

图(15)  /  表(6)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-10
  • 网络出版日期:  2024-09-26
  • 刊出日期:  2025-05-31

目录

    /

    返回文章
    返回