Floor response spectra of small nuclear reactor considering seismic soil-structure interaction
-
摘要: 小型核反应堆因其广泛的应用前景而成为研发热点。然而,小型核反应堆通常部分或完全埋入地下,这使得土-结构相互作用对其地震响应产生深远的影响。考虑土-结构动力相互作用可更为真实反映非基岩场地核电厂房在地震作用下的响应特性,进而有助于评估核电设备在地震作用下的安全性,对确保核电站系统的可靠性和安全性至关重要。采用数值模拟方法,选取了3个典型场地和1个代表性的小型核反应堆结构作为研究对象,探讨在不同结构埋深和不同楼层高度等条件下小型核反应堆的楼层反应谱特性。研究结果表明,考虑土-结构动力相互作用后,小型核反应堆楼层反应谱的峰值频率会向低频偏移。研究还发现场地土层的刚度对结构楼层反应谱的影响显著。考虑土-结构相互作用后,楼层反应谱随结构楼面高度减小,幅值在低频段有减小的趋势,在中高频段有先减小后增大的趋势。
-
关键词:
- 小型核反应堆 /
- 地震波动输入方法 /
- 土-结构动力相互作用 /
- 楼层反应谱
Abstract: Small nuclear reactors have become a research hotspot due to their wide range of applications. However, tehy are usually partially or completely buried, which makes soil-structure interaction have a profound impact on their seismic responses. Considering the soil-structure dynamic interaction can more realistically reflect the response characteristics of nuclear power plant buildings on soil sites under earthquakes, which can help evaluate the safety of nuclear power equipments under earthquakes, and is crucial to ensure the reliability and safety of the nuclear power plant system. By using the numerical simulation methods, three typical sites and a representative small nuclear reactor structure are selected as the research objects, and the floor response spectral characteristics of small nuclear reactors are explored under different structural burial depths and different floor heights. The research results show that after considering the soil-structure dynamic interaction, the peak frequency of the floor response spectra of small nuclear reactors will shift to low frequency. The stiffness of the site soil layer has a significant impact on the floor response spectra. After considering the soil-structure interaction, the amplitudes of floor response spectra decrease with the decrease of the structural floor height, and the amplitude decreases in the low-frequency range and increases first and then decreases in the medium-high-frequency range. -
-
表 1 场地二的土层参数
Table 1 Layer parameters for Site 2
土层编号 土层厚度/m 密度/(kg·m-3) 初始剪切波速/(m·s-1) S1 9 2050 481.6 S2 14 2053.4 378.0 S3 15 2050 365.8 S4 20 1973.2 476.7 S5 4 2117.6 656.2 S6 14 2117.6 524.3 S7 9 2021.3 431.3 S8 7 2117.6 510.5 S9 21 2101.6 614.2 -
[1] LOCATELLI G, BINGHAM C, MANCINI M. Small modular reactors: a comprehensive overview of their economics and strategic aspects[J]. Progress in Nuclear Energy, 2014, 73: 75-85. doi: 10.1016/j.pnucene.2014.01.010
[2] JIANG W, LI B, XIE W C, et al. Generate floor response spectra: part 1. Direct spectra-to-spectra method[J]. Nuclear Engineering and Design, 2015, 293: 525-546. doi: 10.1016/j.nucengdes.2015.05.034
[3] DE BORBÓN F, DOMIZIO M, AMBROSINI D, et al. Influence of various parameters in the seismic soil-structure interaction response of a nuclear power plant[J]. Engineering Structures, 2020, 217: 110820. doi: 10.1016/j.engstruct.2020.110820
[4] EL HOSENY M, MA J X, DAWOUD W, et al. The role of soil structure interaction (SSI) on seismic response of tall buildings with variable embedded depths by experimental and numerical approaches[J]. Soil Dynamics and Earthquake Engineering, 2023, 164: 107583. doi: 10.1016/j.soildyn.2022.107583
[5] TAKEWAKI I, TAKEDA N, UETANI K. Fast practical evaluation of soil–structure interaction of embedded structures[J]. Soil Dynamics and Earthquake Engineering, 2003, 23(3): 13-20. doi: 10.1016/S0267-7261(02)00225-7
[6] PARK S, SAMADDAR S. Seismic soil-structure interactionanalysis of deeply embedded smrs and associated challenges[C]// The 24th International Conference in Structural Mechanics in Reactor Technology. Busan, 2017.
[7] 谭辉. 土-结构动力相互作用分析中地震波输入方法研究及应用[D]. 北京: 清华大学, 2018: 106-112. TAN Hui. Research and Application of the Seismic Wave Input Method for Soil-Structure Dynamic Interaction Analysis[D]. Beijing: Tsinghua University, 2018: 106-112. (in Chinese)
[8] 刘晶波, 谷音, 杜义欣. 一致黏弹性人工边界及黏弹性边界单元[J]. 岩土工程学报, 2006, 28(9): 1070-1075. https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT202209012.htm LIU Jingbo, GU Yin, DU Yixin. Consistent viscous-spring artificial boundaries and viscous-spring boundary elements[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(9): 1070-1075. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT202209012.htm
[9] 谷音, 刘晶波, 杜义欣. 三维一致黏弹性人工边界及等效黏弹性边界单元[J]. 工程力学, 2007, 24(12): 31-37. https://www.cnki.com.cn/Article/CJFDTOTAL-SFXB200905031.htm GU Yin, LIU Jingbo, DU Yixin. 3d consistent viscous-spring artificial boundary and viscous-spring boundary element[J]. Engineering Mechanics, 2007, 24(12): 31-37. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SFXB200905031.htm
[10] SOLBERG J, HOSSAIN Q, BLINK J, et al. Development of a Generalized Methodology for Soil-Structure Interaction Analysis Using Nonlinear Time-Domain TechniquesNEAMS Program, DOE Office of Nuclear Energy (NE-41)[R]. Livermore: Lawrence Livermore National Lab. (LLNL), 2013.
[11] 李述涛, 刘晶波, 宝鑫, 等. 人工边界子结构地震动输入方法在ABAQUS中的实现[J]. 自然灾害学报, 2020, 29(4): 133-141. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH202004014.htm LI Shutao, LIU Jingbo, BAO Xin, et al. Implementation for seismic wave input method based on the artificial boundary substructure in ABAQUS[J]. Journal of Natural Disasters, 2020, 29(4): 133-141. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH202004014.htm
[12] 刘晶波, 宝鑫, 谭辉, 等. 土-结构动力相互作用分析中基于内部子结构的地震波动输入方法[J]. 土木工程学报, 2020, 53(8): 87-96. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202008009.htm LIU Jingbo, BAO Xin, TAN Hui, et al. Seismic wave input method for soil-structure dynamic interaction analysis based on internal substructure[J]. China Civil Engineering Journal, 2020, 53(8): 87-96. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202008009.htm
[13] SOLBERG J M, HOSSAIN Q, MSEIS G. Nonlinear time-domain soil–structure interaction analysis of embedded reactor structures subjected to earthquake loads[J]. Nuclear Engineering and Design, 2016, 304: 100-124. doi: 10.1016/j.nucengdes.2016.04.026