Experimental study on mechanical properties and constitutive relation of CSG materials
-
摘要: 通过大型三轴试验得到了胶凝堆石料应力-应变关系曲线,分析了其力学性能,并针对关系曲线存在明显的非线性及软化特性,采用分段描述的方法建立了胶凝堆石料的本构关系,即破坏强度前考虑剪切所引起的体积变化采用双模量K-G模型描述,峰值强度后软化曲线的数学模型通过数据的回归分析和参数反演方式分析得到,各模型参数均可通过大三轴试验获取,方便可靠。Abstract: The stress-strain relationship curve of cementitious CSG materials is obtained through the large-scale triaxial tests, and its mechanical properties are analyzed. In response to the obvious nonlinear and softening characteristics of the relationship curve, a segmented description method is used to establish the constitutive relation of cementitious CSG materials. The volume change caused by shear is considered in the curve before failure strength, and a two-modulus K-G model is used to describe it. The mathematical model for the softening curve after the peak strength is obtained through the regression analysis of data and parameter inversion analysis.The parameters of each model can be easily determined through the large-scale triaxial tests.
-
Keywords:
- CSG material /
- stress and strain /
- age /
- constitutive relation /
- large-scale triaxial test
-
-
表 1 60 d龄期胶凝堆石料各向等压固结试验结果
Table 1 Results of isotropic isobaric consolidation tests on CSG materials at age of 60 d
压力p/kPa 试样初始体积Vc/cm3 固体颗粒体积Vs/cm3 排水量Vf/cm3 孔隙比e 400 44405.70 36400 1506.9 4.14 600 44836.02 36400 1335.8 3.67 800 44193.49 36400 1187.5 3.26 -
[1] 何蕴龙, 刘俊林, 李建成. Hardfill筑坝材料应力-应变特性与本构模型研究[J]. 四川大学学报(工程科学版), 2011, 43(6): 40-47. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201106008.htm HE Yunlong, LIU Junlin, LI Jiancheng. Study on the stress-strain property and constitutive model of hardfill material[J]. Journal of Sichuan University (Engineering Science Edition), 2011, 43(6): 40-47. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201106008.htm
[2] 贾金生, 马锋玲, 李新宇, 等. 胶凝砂砾石坝材料特性研究及工程应用[J]. 水利学报, 2006, 37(5): 578-582. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200605009.htm JIA Jinsheng, MA Fengling, LI Xinyu, et al. Study on material characteristics of cement-sand-gravel dam and engineering application[J]. Journal of Hydraulic Engineering, 2006, 37(5): 578-582. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200605009.htm
[3] 黄虎, 李坡, 霍文龙, 等. 胶凝砂砾石材料宏细观参数及破坏模式研究[J]. 华北水利水电大学学报(自然科学版), 2020, 41(4): 27-38. https://www.cnki.com.cn/Article/CJFDTOTAL-HBSL202004005.htm HUANG Hu, LI Po, HUO Wenlong, et al. Study on relationship between mesoscopic and macroscopic mechanical parameters and failure model of cemented sand and gravel material[J]. Journal of North China University of Water Resources and Electric Power (Natural Science Edition), 2020, 41(4): 27-38. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HBSL202004005.htm
[4] 蔡新, 武颖利, 李洪煊, 等. 胶凝堆石料本构特性研究[J]. 岩土工程学报, 2010, 32(9): 1340-1344. http://www.cgejournal.com/cn/article/id/13520 CAI Xin, WU Yingli, LI Hongxuan, et al. Constitutive equation for CSG materials[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(9): 1340-1344. (in Chinese) http://www.cgejournal.com/cn/article/id/13520
[5] 颉建军. 300m级浇筑式沥青混凝土面板胶凝堆石坝设计研究[J]. 水力发电, 2017, 43(2): 54-59. https://www.cnki.com.cn/Article/CJFDTOTAL-SLFD201702015.htm XIE Jianjun. Design study of jellification rockfill dam for 300m-high level pouring asphalt concrete face[J]. Water Power, 2017, 43(2): 54-59. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLFD201702015.htm
[6] T F, A N, H K, et al. Material properties of CSG for the seismic design of trapezoid-shaped CSG dam: Proceedings of the Thirteenth World Conference on Earthquake Engineering[C]// Vancouver, 2004.
[7] 李娜, 何鲜峰, 张斌, 等. 基于大型三轴试验的胶凝堆石料力学特性试验研究[J]. 水力发电学报, 2014, 33(6): 202-208. https://www.cnki.com.cn/Article/CJFDTOTAL-SFXB201406031.htm LI Na, HE Xianfeng, ZHANG Bin, et al. Study of mechanical properties of cemented sand and rockfill material based on large-scale triaxial tests[J]. Journal of Hydroelectric Engineering, 2014, 33(6): 202-208. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SFXB201406031.htm