• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

桥基岸坡土体剪切强度特性试验研究

王中豪, 周慧林

王中豪, 周慧林. 桥基岸坡土体剪切强度特性试验研究[J]. 岩土工程学报, 2023, 45(S1): 193-196. DOI: 10.11779/CJGE2023S10030
引用本文: 王中豪, 周慧林. 桥基岸坡土体剪切强度特性试验研究[J]. 岩土工程学报, 2023, 45(S1): 193-196. DOI: 10.11779/CJGE2023S10030
WANG Zhonghao, ZHOU Huilin. Shear strength characteristics of soils on bank slope of bridge foundation[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S1): 193-196. DOI: 10.11779/CJGE2023S10030
Citation: WANG Zhonghao, ZHOU Huilin. Shear strength characteristics of soils on bank slope of bridge foundation[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S1): 193-196. DOI: 10.11779/CJGE2023S10030

桥基岸坡土体剪切强度特性试验研究  English Version

详细信息
    作者简介:

    王中豪(1990—),男,硕士,工程师,主要从事岩土工程试验及稳定性分析工作。E-mail: 779475836@qqq.com

  • 中图分类号: TU43

Shear strength characteristics of soils on bank slope of bridge foundation

  • 摘要: 为研究对某桥基岸坡稳定性起重要影响的粉质黏土的剪切强度特性和力学参数,对原状土进行了不同含水状态下的大型原位直剪试验。试验结果表明:原状土的变形破坏模式呈蠕塑性破坏。饱和和天然状态下原状土的抗剪断峰值强度参数分别为φ=17.1°,c=22.1 kPa和φ=20.6°,c=29.3 kPa;饱和状态下土的剪切强度参数比天然状态下降低20%左右;试验结果为该桥基岸坡稳定性分析计算提供取值依据。
    Abstract: Aiming at the problem of foundation stability evaluation of a bridge in disease remediation, in order to study the shear strength characteristics and mechanical parameters of the undisturbed soil of silty clay which plays an important role in the stability of the bridge foundation, the large-scale in-situ direct shear tests on the undisturbed soil under different water contents are carried out. The results show that the deformation failure mode of the undisturbed soil is creep plastic failure. Its shear peak strength parameters in the saturateds state are as follows: φ= 17.1 °, c = 22.1 kPa, and those in the natural state are that φ= 20.6 °, c = 29.3 kPa. The strength parameters of the saturated soil are reduced by about 20% compared with those in the natural state. The test results may provide a basis for the stability analysis and calculation of the bank slope of the bridge foundation.
  • 足尺试验是了解盾构隧道结构力学行为的有效方法。许多学者开展了足尺管片接头试验来研究纵缝接头的变形特征和力学特性[1-3]。隧道管片纵缝接头在持续加载作用下的力学性能是以往研究的重点,而很少研究在应用修复措施治理隧道大变形时纵向接缝的变形和力学特性、可恢复性以及恢复效率[4]

    本文通过开展盾构隧道拱顶双缝接头和拱腰单缝接头的原型足尺试验,旨在探究两类接头在隧道上方堆载作用下的变形发展规律,分析盾构隧道管片在恢复过程中各性态特征的演化规律,评价不同既有变形条件下隧道管片不同部位接头变形的恢复效果。

    本文针对上海地铁隧道运用的管片衬砌环中的纵缝接头进行一系列室内结构原型试验,隧道衬砌环和纵缝接头构造形式如图 1所示。试验试件包括两类接头,分别为位于隧道管片环拱顶位置受正弯矩作用的纵缝接头(即封顶块和邻接块连接处接头,以下称为拱顶接头)和位于隧道管片环拱腰位置受负弯矩作用的纵缝接头(即邻接块和标准块连接处接头,以下称为拱腰接头),如图 2所示。弯矩以衬砌环内侧受拉为正,轴力以受压为正。

    图  1  上海地铁盾构隧道管片衬砌结构
    Figure  1.  Structure of segment linings of shield tunnel in Shanghai Metro
    图  2  试验现场照片:(a)拱顶接头试件;(b)拱腰接头试件;(c)位移传感器布置;(d)隧道衬砌环横截面图
    Figure  2.  Photos of test set-up: (a) Specimen of longitudinal joint at tunnel crown, (b) Specimen of longitudinal joint at tunnel waist, (c) Arrangement of displacement sensors, (d) Cross-sectional view of tunnel lining ring

    值得注意的是,隧道拱腰和拱脚纵缝是径向平直面,而拱顶纵缝是与径向斜交的平直面,拱顶纵缝接头是楔形结构,见图 1(a)。然而,以往研究中采用的是简化的如拱腰一样的直缝结构,不能准确描述拱顶处实际的斜接缝构造的力学行为。本文采用隧道拱顶双接头形式进行试验研究。

    采用考虑接头非线性刚度的盾构隧道衬砌分析模型[5]计算接头内力(弯矩、轴力和剪力)。如图 3所示,隧道埋深15 m,周围土体为典型的上海软土,饱和重度(γ)为18 kN/m3,静止侧压力系数(K0)为0.65,地层抗力系数(KS)为6000 kN/m3。该模型首先通过对隧道结构施加竖向压力来模拟地面超载对隧道变形的影响。然后,通过移除竖向压力来模拟卸载。最后,通过对隧道结构施加侧向压力模拟注浆对隧道变形的恢复作用。根据接头内力计算结果可以确定足尺试验中对应不同工况的加载路径。

    图  3  接头内力计算模型
    Figure  3.  Computational model for internal force of joints

    试验中,通过水平和垂直液压千斤顶向试件施加水平载荷和垂直载荷,以模拟接头内力(即弯矩、轴力和剪力),见图 2中(a)和(b)。图 4图 5分别为试验中拱顶接头和拱腰接头的受力分析图。根据力矩平衡方程,拱顶接头试件和拱腰接头试件的外部载荷和内力之间的关系可由式(1)和式(2)分别推导得到。

    {M=GL2+P(L2L1)NhN=Ncosθ+12GsinθQ=Nsinθ+12Gcosθ
    (1)
    {M=PL2G(L1L2L3)NhN=N
    (2)
    图  4  拱顶接头试件受力分析
    Figure  4.  Stress analysis of longitudinal joints at tunnel crown
    图  5  拱腰接头试件受力分析
    Figure  5.  Stress analysis of longitudinal joints at tunnel waist

    式中G为管片重力;MNQ分别为接头处弯矩、轴力和剪力;NP分别为由水平液压千斤顶和竖向液压千斤顶施加的水平向荷载和垂向载荷,通过POP-M工控PC电液伺服多通道控制器实现试验进程的自动控制。

    针对拱顶接头和拱腰接头共开展了6组试验,工况Ⅰ~Ⅲ和工况IV~VI分别研究拱顶接头和拱腰接头超载变形后通过卸载和注浆的变形恢复过程,具体试验过程见表 1。试验在同济大学岩土及地下工程教育部重点实验室进行,采用TJ-GPJ2000盾构管片接头试验加载系统。试验过程中接缝张开量由线性位移传感器(LVDT)测得,如图 2中(c)所示。

    表  1  试验工况
    Table  1.  Test design
    工况编号 接头类型 试验内容 加载过程 试验控制变量 变量值 正常荷载
    水平
    工况Ⅰ 拱顶接头 变形恢复过程 加载至正常荷载水平→施加超载→卸载至正常荷载水平→注浆过程模拟 超载程度/接头内力;
    弯矩M
    轴力S
    剪力Q
    M=178 kN/m,
    N=593 kN,
    Q=88 kN
    拱顶接头:
    M=118 kN/m,
    N=590 kN,
    Q=87 kN
    拱腰接头:
    M=98 kN/m,
    N=816 kN
    工况Ⅱ M=278 kN/m,
    N=927 kN,
    Q=134 kN
    工况Ⅲ M=378 kN/m,
    N=1260 kN,
    Q=181 kN
    工况Ⅳ 拱腰接对 M=155 kN/m,
    N=968 kN
    工况Ⅴ M=171 kN/m,
    N=1068 kN,
    工况Ⅵ M=188 kN/m,
    N=1175 kN
    下载: 导出CSV 
    | 显示表格

    图 6对比显示了受正弯矩作用的隧道拱顶接头在工况Ⅰ~Ⅲ中接缝张开增量的变化。在超载过程中,接头张开量随着荷载的增加而增大。当3工况试件达到最大荷载时,接头变形也达到峰值。在卸载过程中,试验结果表明卸载能在一定程度上恢复接头变形,但不能完全恢复。接头变形卸载恢复百分比,即卸载减少的接缝张开增量与卸载前接缝张开增量的比值,分别为68%,56%,43%。这表明超载越小即变形程度越小,接头变形的可恢复性越好。

    图  6  工况Ⅰ~Ⅲ中拱顶接头在超载、卸载和土体注浆过程中的荷载–变形关系曲线
    Figure  6.  Load-deformation curves of longitudinal joints at tunnel crown during overloading, unloading and soil grouting conditions for test cases Ⅰ~Ⅲ

    针对土体注浆对拱顶接头变形恢复的试验模拟,试验结果表明,其荷载–变形曲线的斜率比卸载过程小得多。减小相同的弯矩,土体注浆可使接头变形得到更有效的恢复,这是因为土体注浆引起的拱顶弯矩减小和轴力增大导致偏心距减小。为了在卸载后将接头变形完全恢复到正常载荷状态下的水平,工况Ⅰ~Ⅲ需要通过模拟土体注浆分别减小弯矩值为20,25,40 kN·m,如图 6所示。

    图 7对比显示了受负弯矩作用的隧道拱腰接头在工况Ⅳ~Ⅵ中接缝张开增量的变化。在超载阶段,相同载荷水平下,3工况的接缝张开增量几乎相同。荷载–变形曲线斜率的减小表明拱腰接头试件的抗弯刚度随着超载水平的增加而降低。在此基础上,研究了卸载和注浆作用下的变形恢复效果。接头变形卸载恢复百分比分别为65%,42%,36%。显然,与拱顶接头呈现的特性一样,变形程度越小卸载恢复效果百分比越大。

    图  7  工况Ⅳ~Ⅵ中拱腰接头在超载、卸载和土体注浆过程中的荷载–变形关系曲线
    Figure  7.  Load-deformation curves of longitudinal joints at tunnel waist during overloading, unloading and soil grouting conditions for test cases Ⅳ~Ⅵ

    在试验模拟土体注浆阶段,荷载–变形曲线的斜率明显小于卸载阶段。在隧道两侧注浆产生的侧向挤压力的作用下,接头偏心距减小。因此,通过减少相同的弯矩,土体注浆比卸载获得更有效的恢复。此外,为了将变形恢复到正常荷载状态的水平,即将接缝张开增量减小到零,试验结果显示工况Ⅳ~Ⅵ分别需要减少弯矩为16,42,48 kN·m。

    从两类接头的试验结果可知:超载作用下接头张开变形呈现出非线性发展规律,总体上,两类接头的抗弯刚度随着接头已有张开变形的增大而降低;超载引起的变形可以通过卸载得到部分恢复,既有变形越小,恢复效果越好,但不能完全恢复到超载之前状态;注浆作用下,拱顶接头的变形恢复效果较拱腰接头更为显著,这是由于注浆产生的横向挤压作用在减小拱顶接头弯矩的同时亦增大了其轴力,即有效降低了拱顶接头处的偏心距。

    本文介绍了上海地铁隧道管片衬砌纵缝接头的一系列室内足尺试验结果,初步探究了卸载和土体注浆对超载引起接头变形的可恢复性,得出以下结论:

    (1) 在地面超载作用下,衬砌环发生较大的横向变形,拱顶接头向隧道管片内侧张开,拱腰接头向隧道管片外侧张开,导致渗漏水等隧道病害发生的概率增大。

    (2) 超载引起的变形能够通过卸载恢复部分变形,既有变形越小,恢复效率越高。当减少相同的弯矩时,土体注浆比卸载能实现更有效的恢复。

    (3) 由于隧道衬砌环中的所有纵缝接头钢螺栓均靠近管片内侧,拱腰接头抗弯能力较拱顶接头差,转动刚度较小,变形较大,变形恢复效果较差。此外,注浆作用下,拱顶接头的变形恢复效果较拱腰接头更为显著,其原因是注浆有效降低了拱顶接头处的偏心距。因此,建议加强拱腰接头处结构设计,增强其抗弯强度,从而提升隧道衬砌的整体安全性能。

  • 图  1   直剪试验原理示意图

    Figure  1.   Schematic diagram of direct shear tests

    图  2   试验场景照片

    Figure  2.   Photo of test scene

    图  3   饱和状态直剪试验τ-u关系曲线

    Figure  3.   τ-u relationship curves of direct shear tests in saturated state

    图  4   天然状态直剪试验τ-u关系曲线

    Figure  4.   τ-u relationship curves of direct shear tests in natural state

    图  5   直剪试验τ-σ关系曲线

    Figure  5.   τ-σrelationship curves of direct shear tests

    表  1   含水率与剪切强度参数结果对比

    Table  1   Comparison of water content and shear strength parameters

    试组编号 试验条件 含水率/% 剪切强度参数
    f φ/(°) c/kPa
    τ1 原位,饱和 24.2 0.31 17.1 22.1
    τ2 原位,天然 21.2 0.38 20.6 29.3
    下载: 导出CSV
  • [1] 王华. 桥基岸坡变形破坏机制物理模拟研究[J]. 岩土力学, 2011, 32(7): 2034-2038. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201107021.htm

    WANG Hua. Study of deformation and failure mechanism of bridge foundation slope with physical simulation method[J]. Rock and Soil Mechanics, 2011, 32(7): 2034-2038. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201107021.htm

    [2] 费力, 关海昌, 王森, 等. 铁路桥基岸坡稳定性分析: 以云贵高原黔渝铁路某双线大桥为例[J]. 高原科学研究, 2019, 3(3): 44-51, 60. https://www.cnki.com.cn/Article/CJFDTOTAL-PTSR201903008.htm

    FEI Li, GUAN Haichang, WANG Sen, et al. Analysis on bank slope stability of railway bridge foundation—a double-line bridge of Guizhou-Chongqing railway in Yungui Plateau as a case study[J]. Plateau Science Research, 2019, 3(3): 44-51, 60. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-PTSR201903008.htm

    [3] 丁秀丽, 付敬, 张奇华. 三峡水库水位涨落条件下奉节南桥头滑坡稳定性分析[J]. 岩石力学与工程学报, 2004, 23(17): 2913-2919. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200417010.htm

    DING Xiuli, FU Jing, ZHANG Qihua. Stability analysis of landslide in the south end of Fengjie highway bridge with fluctuation of water level of Three Gorges Reservoir[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(17): 2913-2919. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200417010.htm

    [4] 曹培, 杜雨坤. 红砂岩风化土湿化特性的三轴试验研究[J]. 工程地质学报, 2019, 27(4): 819-824. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201904015.htm

    CAO Pei, DU Yukun. Experimental study on wetting deformation and strength behavior of a red sandstone weathered soil[J]. Journal of Engineering Geology, 2019, 27(4): 819-824. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201904015.htm

    [5] 童军, 胡波, 龚壁卫. 原状膨胀土直剪特性研究[J]. 地下空间与工程学报, 2016, 12(3): 613-617. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201603007.htm

    TONG Jun, HU Bo, GONG Biwei. Shear strength behavior of the undisturbed expansive soil[J]. Chinese Journal of Underground Space and Engineering, 2016, 12(3): 613-617. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201603007.htm

    [6] 郭喜峰, 晏鄂川, 刘洋. 三峡库区碎石土滑坡体抗剪强度研究[J]. 重庆交通大学学报(自然科学版), 2015, 34(1): 68-71. https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT201501015.htm

    GUO Xifeng, YAN Echuan, LIU Yang. Shear strength of gravel soil landslide in the Three Gorges Reservoir zone[J]. Journal of Chongqing Jiaotong University (Natural Science), 2015, 34(1): 68-71. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT201501015.htm

    [7] 汤劲松, 刘松玉, 童立元, 等. 卵砾石土抗剪强度指标原位直剪试验研究[J]. 岩土工程学报, 2015, 37(S1): 167-171. doi: 10.11779/CJGE2015S1032

    TANG Jinsong, LIU Songyu, TONG Liyuan, et al. In-situ direct shear tests on shear strength indices of pebble and gravelly soil[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(S1): 167-171. (in Chinese) doi: 10.11779/CJGE2015S1032

    [8] 李红英, 谭跃虎, 赵辉. 某滑坡体岩土参数概率分布统计分析方法研究[J]. 地下空间与工程学报, 2012, 8(3): 659-665. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201203036.htm

    LI Hongying, TAN Yuehu, ZHAO Hui. The statistical analysis technique research on probability distribution of geotechnical parameters of one landslide[J]. Chinese Journal of Underground Space and Engineering, 2012, 8(3): 659-665. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201203036.htm

    [9] 卢阳, 谭新, 郭喜峰, 等. 基于钻孔测试的岩体抗剪强度参数取值方法及其工程应用[J]. 岩石力学与工程学报, 2015, 34(增刊2): 4116-4124. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S2059.htm

    LU Yang, TAN Xin, GUO Xifeng, et al. Estimation of rock mass shear strength parameters based on Bole test and its application to engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S2): 4116-4124. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S2059.htm

    [10] 阮永芬, 高春钦, 刘克文, 等. 基于粒子群算法优化小波支持向量机的岩土力学参数反演[J]. 岩土力学, 2019, 40(9): 3662-3669. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201909042.htm

    RUAN Yongfen, GAO Chunqin, LIU Kewen, et al. Inversion of rock and soil mechanics parameters based on particle swarm optimization wavelet support vector machine[J]. Rock and Soil Mechanics, 2019, 40(9): 3662-3669. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201909042.htm

图(5)  /  表(1)
计量
  • 文章访问数:  105
  • HTML全文浏览量:  19
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-04
  • 网络出版日期:  2023-11-23
  • 刊出日期:  2023-10-31

目录

/

返回文章
返回