适用于致密碎粉岩富水地层的高强丙烯酸盐注浆材料研发及渗透加固特性研究

    杨磊, 宓祥云, 李召峰, 屠文锋, 谢云鹏, 胡浩, 王康

    杨磊, 宓祥云, 李召峰, 屠文锋, 谢云鹏, 胡浩, 王康. 适用于致密碎粉岩富水地层的高强丙烯酸盐注浆材料研发及渗透加固特性研究[J]. 岩土工程学报, 2025, 47(3): 525-534. DOI: 10.11779/CJGE20231290
    引用本文: 杨磊, 宓祥云, 李召峰, 屠文锋, 谢云鹏, 胡浩, 王康. 适用于致密碎粉岩富水地层的高强丙烯酸盐注浆材料研发及渗透加固特性研究[J]. 岩土工程学报, 2025, 47(3): 525-534. DOI: 10.11779/CJGE20231290
    YANG Lei, MI Xiangyun, LI Zhaofeng, TU Wenfeng, XIE Yunpeng, HU Hao, WANG Kang. Development and permeability reinforcement characteristics of high-strength acrylic salt grouting materials for water-rich ultracataclasite[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(3): 525-534. DOI: 10.11779/CJGE20231290
    Citation: YANG Lei, MI Xiangyun, LI Zhaofeng, TU Wenfeng, XIE Yunpeng, HU Hao, WANG Kang. Development and permeability reinforcement characteristics of high-strength acrylic salt grouting materials for water-rich ultracataclasite[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(3): 525-534. DOI: 10.11779/CJGE20231290

    适用于致密碎粉岩富水地层的高强丙烯酸盐注浆材料研发及渗透加固特性研究  English Version

    基金项目: 

    云南省重点研发计划项目 202103AA080016

    国家重点研发计划项目 2022YFB2601900

    国家重点研发计划项目 2022YFB2601903

    国家自然科学基金项目 51979153

    国家自然科学基金项目 52209138

    国家自然科学基金项目 52178338

    山东省重点研发计划(重大科技创新工程)项目 2020CXGC011405

    山东省重点研发计划(重大科技创新工程)项目 2021CXGC010301

    博士后创新项目 SDCX-ZG-202203037

    详细信息
      作者简介:

      杨磊(1982—),男,教授,从事隧道与地下工程灾害防控、裂隙岩体力学特性相关研究工作。E-mail:yanglei@sdu.edu.cn

      通讯作者:

      李召峰, E-mail:lizf@sdu.edu.cn

    • 中图分类号: TU525

    Development and permeability reinforcement characteristics of high-strength acrylic salt grouting materials for water-rich ultracataclasite

    • 摘要: 针对富水致密软弱围岩致灾性强、常规注浆材料适用性弱的问题,开展了新型高强丙烯酸盐注浆材料研发,分析了其聚合反应机理及工作性能影响规律,研究了该新型材料对致密碎粉岩的渗透加固特性。基于有机-无机互穿网络方法,研发了高强丙烯酸盐注浆材料,由主剂、无机改性剂、引发剂、促进剂、交联剂等原料组成,具有高强、高渗的显著特点;高强丙烯酸盐材料两组分混合后聚合反应充分,无机网络结构均匀穿插于丙烯酸盐有机凝胶网络中;基于正交试验获得了不同组成的新型材料胶凝时间、凝胶体抗压强度及吸水膨胀率特征指标及组分影响规律,浆液胶凝时间范围为45~201 s,凝胶体单轴抗压强度范围为1.2~2.1 MPa、吸水膨胀率范围为16%~51%,并进一步阐明了新型材料主要工作性能的影响因素敏感性排序;基于室内试验及微观分析,研究了浆液在致密碎粉岩中的渗透加固特性,结果表明高强丙烯酸盐浆液与纯丙烯酸盐浆液的渗透扩散能力接近,远大于水泥浆液,且高强丙烯酸盐材料对碎粉岩颗粒起到明显的包裹强化作用,加固体强度达2.31 MPa,是纯丙烯酸盐材料加固强度的5.4~11.0倍,可为隧洞灾害注浆治理与安全掘进提供有力的安全保障。
      Abstract: Aiming at the problems of strong disasters caused by water-rich dense weak surrounding rock and weak applicability of the conventional grouting materials, a new type of high-strength acrylic acid grouting material is developed, its polymerization reaction mechanism and working performance are analyzed, and the permeability and reinforcement characteristics of the new material on dense pulverized silty rock are studied. Based on the organic-inorganic interpenetrating network method, the high-strength acrylic acid grouting material is developed, which is composed of the main agent, inorganic modifier, initiator, accelerator, crosslinking agent and other raw materials, and it has remarkable characteristics of high strength and high permeability. The polymerization reaction of the two components of the high strength acrylate material is sufficient after mixing, and the inorganic network structure is evenly interspersed in the acrylate organogels network. According to the orthogonal tests, the characteristics of the new materials with different compositions, such as the gelling time, compressive strength and water absorption expansion rate as well as the influence rules of the components, are obtained. The gelling time range of the slurry is 45~201 s, the uniaxial compressive strength of the gel is 1.2~2.1 MPa, and the water absorption expansion rate is 16%~51%. The sensitivity ranking of factors affecting the main working properties of the new materials is further clarified. In accordance with the laboratory tests and microanalytical analysis technology, the permeability and reinforcement characteristics of grout in dense crushed rock are studied. The results show that the permeability and diffusion capacity of the high-strength acrylate grout is close to that of the pure one, which is much higher than that of the cement grout. Moreover, the high-strength acrylate material has an obvious coating and strengthening effect on crushed rock particles, and the solid strength reache 2.31 MPa. It is 5.4 ~ 11.0 times the reinforcement strength of the pure acrylic salt material, which can provide a strong safety guarantee for disaster grouting control and safe excavation of tunnels.
    • 图  1   丙烯酸盐主剂合成的化学反应原理

      Figure  1.   Chemical reaction principle of main agent synthesis of acrylic acid

      图  2   高强丙烯酸盐注浆材料制备示意图

      Figure  2.   Schematic diagram of preparation of high-strength acrylic salt grout

      图  3   红外吸收光谱图

      Figure  3.   Infrared absorption spectra

      图  4   高强丙烯酸盐注浆材料凝胶的SEM图像

      Figure  4.   SEM images of acrylic salt grout gel

      图  5   各因素对浆液胶凝时间影响的极差分析

      Figure  5.   Range analysis of influences of various factors on grout setting time

      图  6   各因素对浆液凝胶体单轴抗压强度影响的极差分析

      Figure  6.   Range analysis of influences of various factors on uniaxial compressive strength of grout gel

      图  7   各因素对浆液凝胶体膨胀率影响的极差分析

      Figure  7.   Range analysis of influences of various factors on expansion rate of grout gel

      图  8   不同浆液及其在碎粉岩中的渗透扩散效果

      Figure  8.   Different grouts and their permeability and diffusion effects in ultracataclasite

      图  9   不同浆液渗透加固碎粉岩试样的单轴抗压强度

      Figure  9.   Uniaxial compressive strengths of ultracataclasite specimens reinforced by different grouts

      图  10   注浆加固体取样位置示意图

      Figure  10.   Schematic diagram of sampling positions of reinforced specimens

      图  11   不同位置加固体试样的单轴抗压强度

      Figure  11.   Uniaxial compressive strengths of reinforced specimens produced from different positions

      图  12   碎粉岩渗透加固前后微观形貌变化

      Figure  12.   Change of micromorphology of ultracataclasite before and after infiltration reinforcement

      图  13   碎粉岩渗透加固前后孔径变化

      Figure  13.   Change of pore diameter of ultracataclasite before and after infiltration reinforcement

      表  1   高强丙烯酸盐材料研发所需原料

      Table  1   Raw materials of high-strength acrylic salt grout

      类型 原料 分子式 分子量
      主剂 丙烯酸 C3H4O2 72.06
      氧化钙 CaO 56.07
      氧化镁 MgO 40.30
      改性剂 半水石膏 α-2CaSO4·H2O 154.15
      引发剂 过硫酸钾 K2S2O8 270.32
      促进剂 三乙醇胺 C6H15NO3 149.19
      交联剂 聚乙二醇酸酯
      溶剂 H2O 18
      下载: 导出CSV

      表  2   高强丙烯酸盐注浆材料组分及质量分数

      Table  2   Material composition and mass ratios of high-strength acrylic salt grout

      组分及原料类型 A组分 B组分 溶剂(纯水)
      主剂 促进剂 交联剂 改性剂 引发剂
      wt/% 16~30 1~5 5~10 20~30 1~5 20~66
      下载: 导出CSV

      表  3   正交试验具体工况

      Table  3   Specific cases of orthogonal tests

      因素工况 主剂wt/% 改性剂wt/% 促进剂wt/% 引发剂wt/% 交联剂wt/%
      1 12 22 1 1 6
      2 12 24 2 2 7
      3 12 26 3 3 8
      4 12 28 4 4 9
      5 14 28 2 3 6
      6 14 26 1 4 7
      7 14 24 4 1 8
      8 14 22 3 2 9
      9 16 24 3 4 6
      10 16 22 4 3 7
      11 16 28 1 2 8
      12 16 26 2 1 9
      13 18 26 4 2 6
      14 18 28 3 1 7
      15 18 22 2 4 8
      16 18 24 1 3 9
      下载: 导出CSV

      表  4   正交试验结果

      Table  4   Results of orthogonal tests

      试验工况 凝胶时间/s 抗压强度/MPa 膨胀率/%
      1 201 1.2 30
      2 102 1.5 24
      3 61 1.7 21
      4 45 1.9 16
      5 55 1.9 20
      6 60 1.7 26
      7 181 1.5 28
      8 93 1.3 35
      9 50 1.6 33
      10 51 1.3 40
      11 120 2.0 23
      12 183 1.7 28
      13 90 1.8 38
      14 171 2.1 31
      15 50 1.5 51
      16 55 1.7 41
      下载: 导出CSV
    • [1] 高红军, 陈勇. 富水大断面软弱围岩隧道施工方法研究[J]. 公路交通科技(应用技术版), 2020, 16(2): 270-273.

      GAO Hongjun, CHEN Yong. Study on construction method of soft surrounding rock tunnel with large section in Fushui[J]. Highway Traffic Science and Technology (Applied Technology Edition) 2020, 16(2): 270-273. (in Chinese)

      [2] 魏源泉. 径向注浆对富水软弱围岩隧道二次衬砌的影响研究[D]. 重庆: 重庆交通大学, 2016.

      WEI Yuanquan. Study on Influence of Radial Grouting on Secondary Lining of Water-Rich Soft Surrounding Rock Tunnel[D]. Chongqing: Chongqing Jiaotong University, 2016. (in Chinese)

      [3]

      FENG J, WANG X, ZHOU Y, et al. Study on the supporting time of the secondary lining of the highway tunnel with weak surrounding rock[J]. IOP Conference Series: Earth and Environmental Science, 2021, 643(1): 012042. doi: 10.1088/1755-1315/643/1/012042

      [4]

      HAO C, FENG G, WANG P. Proportion optimization of grouting materials for roadways with soft surrounding mass[J]. International Journal of Green Energy, 2020, 18(32): 1-16.

      [5] 李利平, 成帅, 张延欢, 等. 地下工程安全建设面临的机遇与挑战[J]. 山东科技大学学报(自然科学版), 2020, 39(4): 1-13.

      LI Liping, CHENG Shuai, ZHANG Yanhuan, et al. Opportunities and challenges of underground engineering safety construction[J]. Journal of Shandong University of Science and Technology (Natural Science Edition), 2020, 39(4): 1-13. (in Chinese)

      [6]

      TU W, LI L, SHANG C, et al. Comprehensive risk assessment and engineering application of mine water inrush based on normal cloud model and local variable weight[J]. Energy Sources Part A Recovery Utilization and Environmental Effects, 2019, 46(1): 4298-4313. http://www.xueshufan.com/publication/2990085288

      [7]

      LI L, TU W, SHI S, et al. Mechanism of water inrush in tunnel construction in karst area[J]. Geomatics, Natural Hazards and Risk, 2016, 7(S1): 1-12.

      [8]

      LUO Y. Influence of water on mechanical behavior of surrounding rock in hard-rock tunnels: an experimental simulation[J]. Engineering Geology, 2020, 277: 105816. doi: 10.1016/j.enggeo.2020.105816

      [9]

      WU Y, QIAO W G, LI Y Z, et al. Development and validation of environmentally friendly similar surrounding rock materials and cement slurry for surrounding rock repair and reinforcement[J]. Journal of Cleaner Production, 2022, 347: 131288. doi: 10.1016/j.jclepro.2022.131288

      [10] 王凤云. 深埋隧道软弱围岩稳定性分析及其锚固控制研究[J]. 岩石力学与工程, 2020, 39(10): 2160.

      WANG Fengyun. Stability analysis and anchoring control of soft surrounding rock in deep tunnel[J]. Journal of Rock Mechanics and Engineering, 2020, 39(10): 2160. (in Chinese)

      [11]

      MA C. Modeling of grouting penetration in porous medium with influence of grain distribution and grout-water interaction[J]. Processes, 2021, 10(1): 77-84. doi: 10.3390/pr10010077

      [12]

      SHA F, LIN C, LI Z, et al. Reinforcement simulation of water-rich and broken rock with Portland cement-based grout[J]. Construction and Building Materials, 2019, 221: 292-300. doi: 10.1016/j.conbuildmat.2019.06.094

      [13]

      ZHANG J P, LIU L M, LI Q H, et al. Development of cement-based self-stress composite grouting material for reinforcing rock mass and engineering application[J]. Construction and Building Materials, 2019, 201: 314-327.

      [14]

      VASUMITHRAN M, ANAND K B, SATHYAN D. Effects of fillers on the properties of cement grouts[J]. Construction and Building Materials, 2020, 246: 118346.

      [15]

      ZHANG L, YU R, ZHANG Q, et al. Permeation grouting diffusion mechanism of quick setting grout[J]. Tunnelling and Underground Space Technology, 2022: 124: 104449.

      [16]

      PARK D S, OH J. Permeation grouting for remediation of dam cores[J]. Engineering Geology, 2017, 233: 63-75.

      [17]

      LI Z, ZHANG L, CHU Y, et al. Research on influence of water-cement ratio on reinforcement effect for permeation grouting in sand layer[J]. Advances in Materials Science and Engineering, 2020(S1): 1-12.

      [18]

      EPI G, GORJANC D A. Influence of the web formation of a basic layer of medical textiles on their functionality[J]. Polymers, 2022, 14(11): 2258.

      [19]

      LI Z, ZHANG J, LI S, et al. Effect of different gypsums on the workability and mechanical properties of red mud-slag based grouting materials[J]. Journal of Cleaner Production, 2019, 245: 118759.

      [20]

      PAUL S C, ROOYEN A V, VAN Zijl G P A G, et al. Properties of cement-based composites using nanoparticles: a comprehensive review[J]. Construction and Building Materials, 2018, 189: 1019-1034.

      [21] 姜瑜. 注浆材料的现状与发展策略[J]. 化工新型材料, 2022, 50(1): 282-286.

      JIANG Yu. Current situation and development strategy of grouting materials[J]. New Chemical Materials, 2022, 50(1): 282-286. (in Chinese)

      [22] 秦鹏飞. 化学注浆技术及其应用进展[J]. 城市轨道交通研究, 2020, 23(9): 157-161.

      QIN Pengfei. Chemical grouting technology and its application progress[J]. Urban Rail Transit Research, 2020, 23(9): 157-161. (in Chinese)

      [23]

      MA S M, LIU M Z, CAO L X, et al. Preparation of a superabsorbent resistant to saline solution by copolymerization of acrylate with acrylamide[J]. Journal of Functional Polymers, 2003, 16(4): 502-506.

      [24]

      MEI F H, WANG S F, X. Y. Preparation and performance enhancements of low-heat-releasing polyurethane grouting materials with epoxy resin and water glass[J]. Applied Sciences-Basel, 2022, 12(13): 6397.

      [25]

      E. A. Vik, L. Experiences from environmental risk management of chemical grouting agents used during construction of the tunnel[J]. Tunnelling and Underground Space Technology, 2000, 15(4): 369-378.

      [26]

      USHAKOVA T M. All polyethylene compositions based on ultrahigh molecular weight polyethylene: synthesis and properties[J]. Journal of Applied Polymer Science, 2020, 137: 49121.

      [27]

      ENVELOPE X, SONG Z, DING Y. Predicting compressive strength of cement-based materials containing water-absorbent polymers considering the internal-curing region[J]. Construction and Building Materials, 2022, 360: 129594. http://www.sciencedirect.com/science/article/pii/S0950061822032500

      [28]

      YU H, ZHANG Y, REN W, et al. Effect of methacrylic acid on the properties of ethylene-vinylene acetate rubber vulcanizates reinforced by magnesium hydroxide[J]. Journal of Applied Polymer Science, 2011, 121: 279-285. http://www.onacademic.com/detail/journal_1000033761715210_7f72.html

    • 期刊类型引用(4)

      1. 王丞枫,李泽健. 基于Runge-Kutta算法的硬化土模型二次开发. 工程技术研究. 2023(13): 39-43 . 百度学术
      2. 付小蝶,张爱军,王彬铧,刘宏泰. 板桩支挡结构的应力与位移弹性理论解. 中国水利水电科学研究院学报(中英文). 2022(06): 540-548 . 百度学术
      3. 李连祥,王雷,赵永新,季相凯. 考虑支护结构作用的地下管廊真实受力模型. 山东大学学报(工学版). 2021(01): 60-68 . 百度学术
      4. 彭晓钢,王寰宇,李有志. 考虑土体强度非线性的地震主动土压力分析. 建筑施工. 2021(06): 1135-1140 . 百度学术

      其他类型引用(17)

    图(13)  /  表(4)
    计量
    • 文章访问数:  244
    • HTML全文浏览量:  29
    • PDF下载量:  52
    • 被引次数: 21
    出版历程
    • 收稿日期:  2023-12-28
    • 网络出版日期:  2024-09-28
    • 刊出日期:  2025-02-28

    目录

      /

      返回文章
      返回