Development and permeability reinforcement characteristics of high-strength acrylic salt grouting materials for water-rich ultracataclasite
-
摘要: 针对富水致密软弱围岩致灾性强、常规注浆材料适用性弱的问题,开展了新型高强丙烯酸盐注浆材料研发,分析了其聚合反应机理及工作性能影响规律,研究了该新型材料对致密碎粉岩的渗透加固特性。基于有机-无机互穿网络方法,研发了高强丙烯酸盐注浆材料,由主剂、无机改性剂、引发剂、促进剂、交联剂等原料组成,具有高强、高渗的显著特点;高强丙烯酸盐材料两组分混合后聚合反应充分,无机网络结构均匀穿插于丙烯酸盐有机凝胶网络中;基于正交试验获得了不同组成的新型材料胶凝时间、凝胶体抗压强度及吸水膨胀率特征指标及组分影响规律,浆液胶凝时间范围为45~201 s,凝胶体单轴抗压强度范围为1.2~2.1 MPa、吸水膨胀率范围为16%~51%,并进一步阐明了新型材料主要工作性能的影响因素敏感性排序;基于室内试验及微观分析,研究了浆液在致密碎粉岩中的渗透加固特性,结果表明高强丙烯酸盐浆液与纯丙烯酸盐浆液的渗透扩散能力接近,远大于水泥浆液,且高强丙烯酸盐材料对碎粉岩颗粒起到明显的包裹强化作用,加固体强度达2.31 MPa,是纯丙烯酸盐材料加固强度的5.4~11.0倍,可为隧洞灾害注浆治理与安全掘进提供有力的安全保障。Abstract: Aiming at the problems of strong disasters caused by water-rich dense weak surrounding rock and weak applicability of the conventional grouting materials, a new type of high-strength acrylic acid grouting material is developed, its polymerization reaction mechanism and working performance are analyzed, and the permeability and reinforcement characteristics of the new material on dense pulverized silty rock are studied. Based on the organic-inorganic interpenetrating network method, the high-strength acrylic acid grouting material is developed, which is composed of the main agent, inorganic modifier, initiator, accelerator, crosslinking agent and other raw materials, and it has remarkable characteristics of high strength and high permeability. The polymerization reaction of the two components of the high strength acrylate material is sufficient after mixing, and the inorganic network structure is evenly interspersed in the acrylate organogels network. According to the orthogonal tests, the characteristics of the new materials with different compositions, such as the gelling time, compressive strength and water absorption expansion rate as well as the influence rules of the components, are obtained. The gelling time range of the slurry is 45~201 s, the uniaxial compressive strength of the gel is 1.2~2.1 MPa, and the water absorption expansion rate is 16%~51%. The sensitivity ranking of factors affecting the main working properties of the new materials is further clarified. In accordance with the laboratory tests and microanalytical analysis technology, the permeability and reinforcement characteristics of grout in dense crushed rock are studied. The results show that the permeability and diffusion capacity of the high-strength acrylate grout is close to that of the pure one, which is much higher than that of the cement grout. Moreover, the high-strength acrylate material has an obvious coating and strengthening effect on crushed rock particles, and the solid strength reache 2.31 MPa. It is 5.4 ~ 11.0 times the reinforcement strength of the pure acrylic salt material, which can provide a strong safety guarantee for disaster grouting control and safe excavation of tunnels.
-
0. 引言
世界水下隧道以盾构隧道为主,由于过江盾构隧道所处环境水压较大、地层竖向荷载分布不均,接缝渗漏已经成为运营期过江盾构隧道的主要病害之一[1-3]。注浆法是盾构隧道渗漏的最有效的处治方法,在盾构隧道工程中,水泥-水玻璃、环氧树脂、丙烯酸盐等注浆材料被常用于处治渗漏病害[4-7]。但在车辆荷载[8-9]、接缝温缩[10-11]、水位变化[12]等外部荷载扰动下,隧道接缝部位注浆处治材料与混凝土界面黏结状态遭到破坏,注浆材料脱落、防水性能受到影响,导致隧道渗漏处治的有效性与长效性较差[13-14]。因此,过江盾构隧道渗漏处治不但要求注浆材料具备良好的抗渗性,也对注浆材料与混凝土间的黏结性能具有一定的要求。提出一种长期有效的注浆材料是当前隧道养护工程的首要问题。
非水反应高聚物的主要成分为异氰酸酯与多元醇,是一种双组份、具有膨胀倍率高、反应速率快、密度可控、抗渗性好[15]等优点的注浆材料。近年来在堤坝[16]、尾矿库防渗[17]、防渗墙抗震[18]等治理方面取得了很好的应用效果。诸多学者对非水反应高聚物与混凝土界面的黏结性能进行了研究。Wang等[19], 王钰轲等[20-21]进行了单调直剪、循环直剪、循环后直剪等一系列试验,分析了循环次数、垂直应力等因素对非水反应高聚物与水泥混凝土块间界面特性的影响,建立了单调剪切下的本构模型,考虑的破坏形式为摩擦破坏,并非黏结破坏。非水反应高聚物与混凝土界面的黏结性能已得到诸多验证,但界面潮湿对黏结性能的影响导致非水反应高聚物处治渗漏的长效性较差。因此本团队基于非水反应高聚物处治渗漏病害的局限性,研发出新型渗透型高聚物。已有的研究证明渗透型高聚物具有较高的抗渗性能与流动性,对隧道渗漏处治具有一定的适用性,但渗透型高聚物在隧道接缝渗漏处治工程中并没有应用过,与隧道接缝混凝土界面间的黏结性能的研究较为欠缺。
通过设置渗透型高聚物与C60混凝土界面(以下称PP-C界面)的单调直剪试验(MDS),考虑不同界面潮湿度、法向荷载、界面粗糙度等因素,分析界面潮湿度、法向荷载、界面粗糙度等因素对PP-C界面黏结性能的影响,开展线性回归分析验证,研究了不同因素对PP-C界面影响主次顺序,拟合并验证了PP-C界面与各因素间的定量关系。分析渗透型高聚物用于过江盾构隧道接缝渗漏处治的适用性,为过江盾构隧道渗漏处治提供思路。
1. 试验内容及方案
1.1 试验材料及试验装置
本试验所选用的注浆材料为自主研发的渗透型高聚物化学浆液,注浆材料原料及反应物如图 1所示。渗透型高聚物浆液在有水和无水环境中都能完全反应。渗透型高聚物A组份主要成分为复合聚醚多元醇、表面活性剂和阻燃剂,B组份为多元异氰酸酯、辅助添加催化剂、增塑剂等调和材料。剪切试验所用注浆材料-混凝土立方体试件养护时间满足要求后,每组数据选取3个试样开展重复实验,以减小误差。剔除异常值后以各组试验的平均值作为最终试验结果。
注浆材料与混凝土界面剪切试验所选用混凝土为过江盾构隧道接缝管片常用的C60混凝土,其基本物理参数见表 1。渗透型高聚物试件成型过程如图 2所示。
表 1 C60混凝土参数Table 1. Parameters of C60 concrete混凝土
类型E/GPa G/GPa μ 抗渗
等级C60 36 14.4 0.167 P10 应力式直剪仪采用YZW50型电动应力式直剪仪,直剪仪主要部件有水平动作器、法向动作器、支撑架、钢支座、连接装置等。切向与法向动作器能够输出的最大作用力均为500 kN,切向动作器可加载剪切速率可在1 ~500 mm/min间调节。直剪仪与控制计算机相连,可以通过计算机实时控制法向和水平向动作器的位移及压力数据。YZW50型电动应力式直剪仪如图 3所示。
1.2 试验方案及步骤
结合渗透型高聚物浆液特点及前期预试验的结果,选取界面浸水时长、界面划痕条数、法向应力3个影响因素,设计正交试验,分析不同因素影响下界面抗剪强度变化规律。渗透型高聚物正交试验因素表如表 2所示。
表 2 正交试验因素水平Table 2. Levels of orthogonal experimental factors因子 界面浸水时长t/h 界面划痕数n/条 法向应力σ/MPa 水平1 0 0 0.2 水平2 24 4 0.6 水平3 72 9 1.2 试验所研究的界面抗剪强度影响因素为界面浸水时长、界面划痕条数和法向应力。各因素具体参数及控制方法如下: 界面浸水时长设为0,24,72 h,通过在试件制作前,将混凝土试块完全浸没入水中进行控制,用于分析界面潮湿程度对界面抗剪强度的影响。界面划痕条数为0,2,4条,通过预先在混凝土试块上设置深2 mm、宽2 mm的划痕进行控制,用于分析界面粗糙度对抗剪强度的影响,不同划痕混凝土块如图 4所示。法向应力设置为0.2,0.6,1.2 MPa,通过进行试验时调整法向作用器进行控制,用于分析法向荷载对界面抗剪强度的影响。
试验具体步骤如下:①将试件放置于应力式直剪仪上,安装法向压板与侧向切板;②调整位移计位置,施加法向与切向预应力,预应力设置为1 kN;③开始试验,设置剪切速率为1 mm/min,至位移计读数达到目标值时停止;④卸载切向力,完全卸载后再次施加预应力;⑤重复步骤③与步骤④,每次重复为一个循环,至达到预设循环次数时停止试验。
2. 试验结果分析
2.1 PP-C界面抗剪强度极差分析
根据正交设计方案完成PP-C界面抗剪强度测试后,将数据进行整理,所得渗透型高聚物各组试验结果如表 3所示,渗透型高聚物在各水平影响因素下界面破坏状态如图 5所示。
表 3 PP-C界面直剪试验结果Table 3. Results of direct shear tests on PP-C interface试验编号 浸水时长t/h 划痕n/条 法向应力σh/MPa 抗剪强度τ/MPa 1 0 0 0.2 1.2820 2 0 2 0.6 1.4561 3 0 4 1.2 1.587 4 24 2 1.2 1.5109 5 24 4 0.2 1.3862 6 24 0 0.6 1.4152 7 72 4 0.6 1.4683 8 72 0 1.2 1.4920 9 72 2 0.2 1.2983 极差分析公式如下所示,极差分析过程如下:
(1) (2) 式中:ki为因素在各水平下所有试验结果的和;Ki为某因素在第i水平下所有结果的平均值;S为设定试验因素的水平数;R为某因素各水平试验结果的算术平均值的极差,R值越大,代表该因素对试验结果的影响越大,反之,对试验结果的影响越小。通过各因素的R值进行排序,即得出各因素对试验结果影响的主次顺序。使用极差分析法对PP-C界面抗剪强度数据进行分析验证,所得结果如表 4所示。
表 4 PP-C界面抗剪强度极差分析表Table 4. Analysis of poor shear strength of PP-C interface指标 浸水时长t/h 划痕数n/条 法向应力σh/MPa K1 1.441700000 1.396400000 1.322166667 K2 1.437433333 1.421766667 1.446533333 K3 1.419533333 1.480500000 1.529966667 R 0.022166667 0.084100000 0.207800000 由表 4可知各因素对PP-C界面抗剪强度影响从大到小的排序为法向压力 > 划痕数 > 浸水时长。
2.2 PP-C界面抗剪强度效应曲线分析
根据不同因素影响下的PP-C界面抗剪强度做出效应图,PP-C界面抗剪强度效应图如图 6~8所示。
(1)界面潮湿度对界面抗剪强度影响分析
由图 5(a)~(c)可知,随浸水时长增加,PP-C界面脱落更为完整,界面残留的高聚物或混凝土碎屑逐渐减少。由图 6可知,随着浸水时长增加,PP-C界面抗剪强度呈现下降趋势,但下降幅度较小,干燥、浸水24 h、浸水72 h状态下界面抗剪强度分别为1.442,1.437,1.419 MPa,即使浸水72 h,界面抗剪强度相较于界面干燥条件下仅下降0.022 MPa,下降幅度不足5%。说明界面潮湿程度对PP-C界面的影响较小。
(2)界面粗糙度对界面抗剪强度影响分析
由图 5(d)~(f)可知,随混凝土界面划痕数增加,PP-C界面破坏状态更为严重,在界面上残留的高聚物或混凝土的碎屑逐渐增多。由图 7可知,随着划痕数增多,PP-C界面抗剪强度呈现上升趋势。混凝土界面划痕数分别为0,2,4条时,PP-C界面的抗剪强度分别为1.4,1.422,1.481 MPa,界面划痕数为4时的抗剪强度相较于没有划痕时上升0.081 MPa,上升约7%,对界面抗剪强度的影响要大于界面潮湿度的影响。这是由于随划痕数增多,PP-C界面间的接触面积逐渐增大,界面接触更为充分,抗剪强度随之增加。
(3)法向应力对界面抗剪强度影响分析
由图 5(g)~(i)可知,随法向应力增加,界面破损状态更为严重,有大量的混凝土与高聚物碎屑残留在界面上。由图 8可知,随法向应力增加,PP-C界面抗剪强度呈上升趋势,且较为明显。法向应力分别为0.2,0.6,1.2 MPa时,PP-C界面的抗剪强度分别为1.322,1.447,1.530 MPa,法向应力1.2 MPa下界面抗剪强度相较于0.2 MPa增加了0.208 MPa,上升约16%,对界面抗剪强度的影响最大,远超其余两因素,是影响界面抗剪强度的主控因素。
2.3 PP-C界面抗剪强度回归模型建立及验证
根据表 4的PP-C界面抗剪强度试验数据进行多元回归分析,确定界面抗剪强度与各影响因素间的定量关系。设定界面抗剪强度τ与浸水时长t、界面划痕数N、法向应力之间成线性关系。PP-C界面抗剪强度τ与各因素之间的理论模型为
(3) 式中:a为常数;b1,b2,b3为偏回归系数值;X1为浸水时长(t);X2为界面划痕数;X3为法向应力。
根据式(1),对界面抗剪强度τ与各影响因素的实验数据进行拟合分析,得到多元线性回归系数,如表 5所示。根据表 5多元回归系数及正交试验结果对渗透型高聚物与各因素间定量关系进行拟合及分析,拟合公式为
(4) 表 5 多元回归系数Table 5. Multiple regression coefficients回归系数 a b1 b2 b3 数值 1.2661 -0.000317 0.02102 0.2024 界面抗剪强度方差分析见表 6。
表 6 界面抗剪强度方差分析Table 6. Analysis of variance of shear strength of interface来源 自由度 SS MS F P 回归 3 0.073672 0.024557 25.44 0.002 误差 5 0.004826 0.000965 合计 8 0.078497 注:S = 0.145897,R-Sq= 94.77%,R-Sq(调整)= 89.55%。 过高聚物与混凝土界面抗剪强度τ与高聚物密度ρ、浸水时长t、界面划痕条数n、法向应力σh等影响因素的拟合公式分析结果可以发现:①相关性系数R2为94.77%,且调整的R2为89.55%,这两个值都表明界面抗剪强度拟合公式与实验数据拟合效果很好;②方差分析表 5中的P值(0.002)<0.05与残差分析的P值(0.65)>0.05显示此回归过程拟合模型在α水平为0.05时具有显著统计意义;③图 9为注浆结石体抗压强度与注浆影响参数之间的数值拟合残差正态概率分布图,图 9中,N为拟合选择的数据组数;AD,P分别为Anderson-darling正态性检验的平方值及确定系数。从渗透型高聚物注浆结石体抗压强度的拟合公式残差概率分布图可以看出,残差服从正态分布,验证了式(4)的正确性。从PP-C界面抗剪强度τ与各影响因素间的拟合公式残差结果分析可以发现:残差分析的P值(0.65)>0.05显示此回归过程拟合模型在α水平为0.05时具有显著统计意义。
3. 结论
基于单调直剪试验研究了渗透型高聚物与隧道接缝混凝土界面在不同潮湿度、粗糙度、法向应力下的切向黏结性能,分析了渗透型高聚物处治过江盾构隧道渗漏的优势与适用性。针对渗透型高聚物研究了界面潮湿度、界面粗糙程度、法向应力等因素对渗透型高聚物–混凝土界面抗剪强度的影响。建立并验证了渗透型高聚物与混凝土界面抗剪强度理论模型。
(1)渗透型高聚物与混凝土界面抗剪强度在任何条件下都能达到1.2 MPa以上,满足过江盾构隧道接缝渗漏处治需求,即使隧道接缝部位发生严重渗漏,渗透型高聚物与混凝土界面黏结状态仍能保持稳定。
(2)渗透型高聚物与混凝土界面抗剪强度与界面潮湿度呈反比,与界面粗糙度、法向应力呈正比。渗透型高聚物与混凝土界面抗剪强度的主控影响因素顺序为:法向应力、界面划痕数、界面浸水时长。
(3)基于正交试验数据建立了界面抗剪强度计算模型,经验证线性回归结果与试验结果吻合,对过江盾构隧道接缝渗漏处治工程具有指导意义。
-
表 1 高强丙烯酸盐材料研发所需原料
Table 1 Raw materials of high-strength acrylic salt grout
类型 原料 分子式 分子量 主剂 丙烯酸 C3H4O2 72.06 氧化钙 CaO 56.07 氧化镁 MgO 40.30 改性剂 半水石膏 α-2CaSO4·H2O 154.15 引发剂 过硫酸钾 K2S2O8 270.32 促进剂 三乙醇胺 C6H15NO3 149.19 交联剂 聚乙二醇酸酯 — — 溶剂 水 H2O 18 表 2 高强丙烯酸盐注浆材料组分及质量分数
Table 2 Material composition and mass ratios of high-strength acrylic salt grout
组分及原料类型 A组分 B组分 溶剂(纯水) 主剂 促进剂 交联剂 改性剂 引发剂 wt/% 16~30 1~5 5~10 20~30 1~5 20~66 表 3 正交试验具体工况
Table 3 Specific cases of orthogonal tests
因素工况 主剂wt/% 改性剂wt/% 促进剂wt/% 引发剂wt/% 交联剂wt/% 1 12 22 1 1 6 2 12 24 2 2 7 3 12 26 3 3 8 4 12 28 4 4 9 5 14 28 2 3 6 6 14 26 1 4 7 7 14 24 4 1 8 8 14 22 3 2 9 9 16 24 3 4 6 10 16 22 4 3 7 11 16 28 1 2 8 12 16 26 2 1 9 13 18 26 4 2 6 14 18 28 3 1 7 15 18 22 2 4 8 16 18 24 1 3 9 表 4 正交试验结果
Table 4 Results of orthogonal tests
试验工况 凝胶时间/s 抗压强度/MPa 膨胀率/% 1 201 1.2 30 2 102 1.5 24 3 61 1.7 21 4 45 1.9 16 5 55 1.9 20 6 60 1.7 26 7 181 1.5 28 8 93 1.3 35 9 50 1.6 33 10 51 1.3 40 11 120 2.0 23 12 183 1.7 28 13 90 1.8 38 14 171 2.1 31 15 50 1.5 51 16 55 1.7 41 -
[1] 高红军, 陈勇. 富水大断面软弱围岩隧道施工方法研究[J]. 公路交通科技(应用技术版), 2020, 16(2): 270-273. GAO Hongjun, CHEN Yong. Study on construction method of soft surrounding rock tunnel with large section in Fushui[J]. Highway Traffic Science and Technology (Applied Technology Edition) 2020, 16(2): 270-273. (in Chinese)
[2] 魏源泉. 径向注浆对富水软弱围岩隧道二次衬砌的影响研究[D]. 重庆: 重庆交通大学, 2016. WEI Yuanquan. Study on Influence of Radial Grouting on Secondary Lining of Water-Rich Soft Surrounding Rock Tunnel[D]. Chongqing: Chongqing Jiaotong University, 2016. (in Chinese)
[3] FENG J, WANG X, ZHOU Y, et al. Study on the supporting time of the secondary lining of the highway tunnel with weak surrounding rock[J]. IOP Conference Series: Earth and Environmental Science, 2021, 643(1): 012042. doi: 10.1088/1755-1315/643/1/012042
[4] HAO C, FENG G, WANG P. Proportion optimization of grouting materials for roadways with soft surrounding mass[J]. International Journal of Green Energy, 2020, 18(32): 1-16.
[5] 李利平, 成帅, 张延欢, 等. 地下工程安全建设面临的机遇与挑战[J]. 山东科技大学学报(自然科学版), 2020, 39(4): 1-13. LI Liping, CHENG Shuai, ZHANG Yanhuan, et al. Opportunities and challenges of underground engineering safety construction[J]. Journal of Shandong University of Science and Technology (Natural Science Edition), 2020, 39(4): 1-13. (in Chinese)
[6] TU W, LI L, SHANG C, et al. Comprehensive risk assessment and engineering application of mine water inrush based on normal cloud model and local variable weight[J]. Energy Sources Part A Recovery Utilization and Environmental Effects, 2019, 46(1): 4298-4313. http://www.xueshufan.com/publication/2990085288
[7] LI L, TU W, SHI S, et al. Mechanism of water inrush in tunnel construction in karst area[J]. Geomatics, Natural Hazards and Risk, 2016, 7(S1): 1-12.
[8] LUO Y. Influence of water on mechanical behavior of surrounding rock in hard-rock tunnels: an experimental simulation[J]. Engineering Geology, 2020, 277: 105816. doi: 10.1016/j.enggeo.2020.105816
[9] WU Y, QIAO W G, LI Y Z, et al. Development and validation of environmentally friendly similar surrounding rock materials and cement slurry for surrounding rock repair and reinforcement[J]. Journal of Cleaner Production, 2022, 347: 131288. doi: 10.1016/j.jclepro.2022.131288
[10] 王凤云. 深埋隧道软弱围岩稳定性分析及其锚固控制研究[J]. 岩石力学与工程, 2020, 39(10): 2160. WANG Fengyun. Stability analysis and anchoring control of soft surrounding rock in deep tunnel[J]. Journal of Rock Mechanics and Engineering, 2020, 39(10): 2160. (in Chinese)
[11] MA C. Modeling of grouting penetration in porous medium with influence of grain distribution and grout-water interaction[J]. Processes, 2021, 10(1): 77-84. doi: 10.3390/pr10010077
[12] SHA F, LIN C, LI Z, et al. Reinforcement simulation of water-rich and broken rock with Portland cement-based grout[J]. Construction and Building Materials, 2019, 221: 292-300. doi: 10.1016/j.conbuildmat.2019.06.094
[13] ZHANG J P, LIU L M, LI Q H, et al. Development of cement-based self-stress composite grouting material for reinforcing rock mass and engineering application[J]. Construction and Building Materials, 2019, 201: 314-327.
[14] VASUMITHRAN M, ANAND K B, SATHYAN D. Effects of fillers on the properties of cement grouts[J]. Construction and Building Materials, 2020, 246: 118346.
[15] ZHANG L, YU R, ZHANG Q, et al. Permeation grouting diffusion mechanism of quick setting grout[J]. Tunnelling and Underground Space Technology, 2022: 124: 104449.
[16] PARK D S, OH J. Permeation grouting for remediation of dam cores[J]. Engineering Geology, 2017, 233: 63-75.
[17] LI Z, ZHANG L, CHU Y, et al. Research on influence of water-cement ratio on reinforcement effect for permeation grouting in sand layer[J]. Advances in Materials Science and Engineering, 2020(S1): 1-12.
[18] EPI G, GORJANC D A. Influence of the web formation of a basic layer of medical textiles on their functionality[J]. Polymers, 2022, 14(11): 2258.
[19] LI Z, ZHANG J, LI S, et al. Effect of different gypsums on the workability and mechanical properties of red mud-slag based grouting materials[J]. Journal of Cleaner Production, 2019, 245: 118759.
[20] PAUL S C, ROOYEN A V, VAN Zijl G P A G, et al. Properties of cement-based composites using nanoparticles: a comprehensive review[J]. Construction and Building Materials, 2018, 189: 1019-1034.
[21] 姜瑜. 注浆材料的现状与发展策略[J]. 化工新型材料, 2022, 50(1): 282-286. JIANG Yu. Current situation and development strategy of grouting materials[J]. New Chemical Materials, 2022, 50(1): 282-286. (in Chinese)
[22] 秦鹏飞. 化学注浆技术及其应用进展[J]. 城市轨道交通研究, 2020, 23(9): 157-161. QIN Pengfei. Chemical grouting technology and its application progress[J]. Urban Rail Transit Research, 2020, 23(9): 157-161. (in Chinese)
[23] MA S M, LIU M Z, CAO L X, et al. Preparation of a superabsorbent resistant to saline solution by copolymerization of acrylate with acrylamide[J]. Journal of Functional Polymers, 2003, 16(4): 502-506.
[24] MEI F H, WANG S F, X. Y. Preparation and performance enhancements of low-heat-releasing polyurethane grouting materials with epoxy resin and water glass[J]. Applied Sciences-Basel, 2022, 12(13): 6397.
[25] E. A. Vik, L. Experiences from environmental risk management of chemical grouting agents used during construction of the tunnel[J]. Tunnelling and Underground Space Technology, 2000, 15(4): 369-378.
[26] USHAKOVA T M. All polyethylene compositions based on ultrahigh molecular weight polyethylene: synthesis and properties[J]. Journal of Applied Polymer Science, 2020, 137: 49121.
[27] ENVELOPE X, SONG Z, DING Y. Predicting compressive strength of cement-based materials containing water-absorbent polymers considering the internal-curing region[J]. Construction and Building Materials, 2022, 360: 129594. http://www.sciencedirect.com/science/article/pii/S0950061822032500
[28] YU H, ZHANG Y, REN W, et al. Effect of methacrylic acid on the properties of ethylene-vinylene acetate rubber vulcanizates reinforced by magnesium hydroxide[J]. Journal of Applied Polymer Science, 2011, 121: 279-285. http://www.onacademic.com/detail/journal_1000033761715210_7f72.html
-
其他相关附件