Loading [MathJax]/jax/output/SVG/jax.js
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

毛细-吸附作用下考虑温度和孔隙比影响的土-水特征曲线研究

刘爽, 刘汉龙, 肖杨

刘爽, 刘汉龙, 肖杨. 毛细-吸附作用下考虑温度和孔隙比影响的土-水特征曲线研究[J]. 岩土工程学报, 2025, 47(4): 877-886. DOI: 10.11779/CJGE20231253
引用本文: 刘爽, 刘汉龙, 肖杨. 毛细-吸附作用下考虑温度和孔隙比影响的土-水特征曲线研究[J]. 岩土工程学报, 2025, 47(4): 877-886. DOI: 10.11779/CJGE20231253
LIU Shuang, LIU Hanlong, XIAO Yang. Soil-water characteristic curve considering temperature and void ratio under capillarity and adsorption[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(4): 877-886. DOI: 10.11779/CJGE20231253
Citation: LIU Shuang, LIU Hanlong, XIAO Yang. Soil-water characteristic curve considering temperature and void ratio under capillarity and adsorption[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(4): 877-886. DOI: 10.11779/CJGE20231253

毛细-吸附作用下考虑温度和孔隙比影响的土-水特征曲线研究  English Version

基金项目: 

国家自然科学基金项目 52078085

重庆市研究生科研创新项目 CYB23057

详细信息
    作者简介:

    刘爽(1996—),男,博士研究生,主要从事非饱和土的本构关系方面研究。E-mail: liuscqu@163.com

  • 中图分类号: TU47

Soil-water characteristic curve considering temperature and void ratio under capillarity and adsorption

  • 摘要: 土-水特征曲线是非饱和土重要的本构关系之一,温度和孔隙比显著地影响土-水特征曲线。结合现有的吸附和毛细模型,引入毛细凝聚因子,建立了考虑毛细-吸附作用的土-水特征曲线模型。引入温度相关的水-气界面张力和润湿热,推导了温度相关的浸润系数解析解和基质吸力,从而建立了毛细-吸附作用下考虑温度影响的土-水特征曲线模型。基于不同孔隙比土的孔隙分布曲线可以通过平移、缩放获得,建立了考虑孔隙比的毛细水模型,结合吸附水模型提出了考虑温度和孔隙比的毛细-吸附解耦的土-水特征曲线模型。模型参数可通过两组同温不同孔隙比和一组不同温度的试验结果确定。对比模型预测与试验结果发现该模型较好地预测了多种土在不同温度和孔隙比下的土-水特征曲线。
    Abstract: The soil-water characteristic curve (SWCC) is an important constitutive relationship of unsaturated soils. The temperature and void ratio obviously affect the SWCC of soils. By combining the adsorption and capillary water models for soils with the introduction of a capillary condensation factor, a SWCC model is proposed. Moreover, an analytical solution for wetting coefficient considering temperature is obtained by considering the non-isothermal water-air interfacial tension and enthalpy of immersion per unit area. Then, a temperature-dependent matric suction and SWCC model is established. Additionally, the distribution curves of pores at different void ratios can be obtained by shifting and scaling the curve at the reference state. Then, a void ratio-dependent capillary model is proposed. On this basis, a capillary-adsorption decoupling SWCC model considering temperature, void ratio and capillary condensation is established. The parameters can be determined from two series of test data with different void ratios at the same temperature and one data of different temperatures. The comparison between the predictions and measurements indicates that the proposed model is precise in predicting the SWCCs under different conditions.
  • 图  1   毛细凝聚因子随吸力的演化及其对吸附饱和度的影响

    Figure  1.   Evolution of factor of capillary condensation with suction and its effect on adsorption degree of saturation

    图  2   浸润系数的数值解与解析解对比

    Figure  2.   Comparison between numerical and analytical solutions of wetting coefficient

    图  3   不同温度下与参考状态温度下的吸力关系

    Figure  3.   Relationship of matric suction between different temperatures and reference temperature

    图  4   毛细饱和度随温度的演化

    Figure  4.   Evolution of capillary degree of saturation with temperature

    图  5   土的饱和度预测和试验结果对比

    Figure  5.   Comparison between predictions and test data of different

    图  6   不同条件下黏土[39]的毛细饱和度和吸附饱和度

    Figure  6.   Capillary and adsorption degrees of saturation of clay[39] under different conditions

    表  1   模型参数

    Table  1   Model parameters

    材料 黏土[39] 膨润土[40-41] 黄土[12] 粉质黏土[42]
    Sma/% 52.33 86.17 23.16 0
    η 5.164 4.576 50.40 1
    α/kPa-1 5.047×10-3 2.055×10-5 0.945 2.870×10-2
    n 1.380 1.627 1.234 1.669
    kr 0.828 0.767 0.659 0.674
    hr/(J·m-2) -0.140 -0.173 -0.232 -0.368
    ξ 6.348 5.561 6.318 23.645
    下载: 导出CSV

    表  2   不同类型土的模型预测R2和RMSE

    Table  2   Coefficients of determination and root mean squared error of predicted results of different type soils

    材料 黏土[39] 膨润土[40-41] 黄土[12] 粉质黏土[42]
    R2 0.9853 0.9754 0.9766 0.9634
    RMSE 0.0389 0.0263 0.0332 0.0542
    下载: 导出CSV
  • [1]

    ZHAO Y, RAHARDJO H, SATYANAGA A, et al. A general best-fitting equation for the multimodal soil-water characteristic curve[J]. Geotechnical and Geological Engineering, 2023, 41(5): 3239-3252. doi: 10.1007/s10706-023-02447-z

    [2] 陈正汉, 苗强强, 郭楠, 等. 关于持水特性曲线研究的几个问题[J]. 岩土工程学报, 2023, 45(4): 671-679.

    CHEN Zhenghan, MIAO Qiangqiang, GUO Nan, et al. On some problems of researches on soil-water retention curve[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(4): 671-679. (in Chinese)

    [3]

    VAN GENUCHTEN M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44(5): 892-898.

    [4]

    FREDLUND D G, XING A Q. Equations for the soil-water characteristic curve[J]. Canadian Geotechnical Journal, 1994, 31(4): 521-532.

    [5] 徐晓兵, 陈云敏, 张旭俊, 等. 基于颗分曲线预测可降解土体土水特征曲线的初探研究[J]. 土木工程学报, 2016, 49(12): 108-113.

    XU Xiaobing, CHEN Yunmin, ZHANG Xujun, et al. Prediction on the soil-water characteristic curve of degradable soil from particle-size distribution curve[J]. China Civil Engineering Journal, 2016, 49(12): 108-113. (in Chinese)

    [6] 蔡国庆, 赵成刚, 刘艳. 非饱和土土-水特征曲线的温度效应[J]. 岩土力学, 2010, 31(4): 1055-1060. doi: 10.3969/j.issn.1000-7598.2010.04.008

    CAI Guoqing, ZHAO Chenggang, LIU Yan. Temperature effects on soil-water characteristic curve of unsaturated soils[J]. Rock and Soil Mechanics, 2010, 31(4): 1055-1060. (in Chinese) doi: 10.3969/j.issn.1000-7598.2010.04.008

    [7]

    GALLIPOLI D, WHEELER S J, KARSTUNEN M. Modelling the variation of degree of saturation in a deformable unsaturated soil[J]. Géotechnique, 2003, 53(1): 105-112. doi: 10.1680/geot.2003.53.1.105

    [8]

    ZHAI Q, RAHARDJO H, SATYANAGA A, et al. Framework to estimate the soil-water characteristic curve for soils with different void ratios[J]. Bulletin of Engineering Geology and the Environment, 2020, 79(8): 4399-4409. doi: 10.1007/s10064-020-01825-8

    [9] 胡冉, 陈益峰, 周创兵. 基于孔隙分布的变形土土水特征曲线模型[J]. 岩土工程学报, 2013, 35(8): 1451-1462. http://cge.nhri.cn/article/id/15253

    HU Ran, CHEN Yifeng, ZHOU Chuangbing. A water retention curve model for deformable soils based on pore size distribution[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1451-1462. (in Chinese) http://cge.nhri.cn/article/id/15253

    [10] 高游, 李泽, 孙德安, 等. 考虑初始孔隙比影响的单/双峰土-水特征曲线模型研究[J]. 岩土力学, 2022, 43(6): 1441-1452.

    GAO You, LI Ze, SUN Dean, et al. Unimodal and bimodal soil-water characteristic curves model considering the effect of initial void ratio[J]. Rock and Soil Mechanics, 2022, 43(6): 1441-1452. (in Chinese)

    [11] 陶高梁, 孔令伟. 不同初始孔隙比土体进气值及土-水特征曲线预测[J]. 岩土工程学报, 2018, 40(增刊1): 34-38. doi: 10.11779/CJGE2018S1006

    TAO Gaoliang, KONG Lingwei. Prediction of air-entry value and soil-water characteristic curve of soils with different initial void ratios[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 34-38. (in Chinese) doi: 10.11779/CJGE2018S1006

    [12] 王铁行, 卢靖, 岳彩坤. 考虑温度和密度影响的非饱和黄土土-水特征曲线研究[J]. 岩土力学, 2008, 29(1): 1-5. doi: 10.3969/j.issn.1000-7598.2008.01.001

    WANG Tiehang, LU Jing, YUE Caikun. Soil-water characteristic curve for unsaturated loess considering temperature and density effect[J]. Rock and Soil Mechanics, 2008, 29(1): 1-5. (in Chinese) doi: 10.3969/j.issn.1000-7598.2008.01.001

    [13] 王协群, 邹维列, 骆以道, 等. 考虑压实度时的土水特征曲线和温度对吸力的影响[J]. 岩土工程学报, 2011, 33(3): 368-372. http://cge.nhri.cn/article/id/13949

    WANG Xiequn, ZOU Weilie, LUO Yidao, et al. SWCCs and influence of temperature on matrix suction under different compaction degrees[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(3): 368-372. (in Chinese) http://cge.nhri.cn/article/id/13949

    [14]

    GRANT S A, SALEHZADEH A. Calculation of temperature effects on wetting coefficients of porous solids and their capillary pressure functions[J]. Water Resources Research, 1996, 32(2): 261-270. doi: 10.1029/95WR02915

    [15]

    VAHEDIFARD F, CAO T D, THOTA S K, et al. Nonisothermal models for soil-water retention curve[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2018, 144(9): 04018061. doi: 10.1061/(ASCE)GT.1943-5606.0001939

    [16]

    XIAO Y, LIU S, SHI J Q, et al. Temperature-dependent SWCC model for unsaturated soil[J]. International Journal of Geomechanics, 2024, 24(5): 04024071. doi: 10.1061/IJGNAI.GMENG-9406

    [17] 陈正汉, 谢定义, 王永胜. 非饱和土的水气运动规律及其工程性质研究[J]. 岩土工程学报, 1993, 15(3): 9-20. doi: 10.3321/j.issn:1000-4548.1993.03.002

    CHEN Zhenghan, XIE Dingyi, WANG Yongsheng. Experimental studies of laws of fluid motion, suction and pore pressures in unsaturated soil[J]. Chinese Journal of Geotechnical Engineering, 1993, 15(3): 9-20. (in Chinese) doi: 10.3321/j.issn:1000-4548.1993.03.002

    [18] 龚壁卫, 吴宏伟, 王斌. 应力状态对膨胀土SWCC的影响研究[J]. 岩土力学, 2004, 25(12): 1915-1918. doi: 10.3969/j.issn.1000-7598.2004.12.010

    GONG Biwei, WU Hongwei, WANG Bin. Study on the influence of stress state on SWCC of expansive soil[J]. Rock and Soil Mechanics, 2004, 25(12): 1915-1918. (in Chinese) doi: 10.3969/j.issn.1000-7598.2004.12.010

    [19] 方祥位, 陈正汉, 申春妮, 等. 剪切对非饱和土土-水特征曲线影响的探讨[J]. 岩土力学, 2004, 25(9): 1451-1454. doi: 10.3969/j.issn.1000-7598.2004.09.021

    FANG Xiangwei, CHEN Zhenghan, SHEN Chunni, et al. A study on effect of shear on soil-water characteristic curve of an unsaturated soil[J]. Rock and Soil Mechanics, 2004, 25(9): 1451-1454. (in Chinese) doi: 10.3969/j.issn.1000-7598.2004.09.021

    [20] 陈正汉. 重塑非饱和黄土的变形、强度、屈服和水量变化特性[J]. 岩土工程学报, 1999, 21(1): 85-93. http://cge.nhri.cn/article/id/10260

    CHEN Zhenghan. Deformation, strength, yield and water change characteristics of remolded unsaturated loess[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(1): 85-93. (in Chinese) http://cge.nhri.cn/article/id/10260

    [21] 黄海, 陈正汉, 李刚. 非饱和土在p-s平面上屈服轨迹及土-水特征曲线的探讨[J]. 岩土力学, 2000, 21(4): 316-321. doi: 10.3969/j.issn.1000-7598.2000.04.002

    HUANG Hai, CHEN Zhenghan, LI Gang. A study on yield locus of unsaturated soils on p-s plane and soil-water characteristic curve[J]. Rock and Soil Mechanics, 2000, 21(4): 316-321. (in Chinese) doi: 10.3969/j.issn.1000-7598.2000.04.002

    [22]

    HU R, CHEN Y F, LIU H H, et al. A water retention curve and unsaturated hydraulic conductivity model for deformable soils: consideration of the change in pore-size distribution[J]. Géotechnique, 2013, 63(16): 1389-1405.

    [23] 周葆春, 孔令伟. 考虑体积变化的非饱和膨胀土土水特征[J]. 水利学报, 2011, 42(10): 1152-1160.

    ZHOU Baochun, KONG Lingwei. Effect of volume changes on soil-water characteristics of unsaturated expansive soil[J]. Journal of Hydraulic Engineering, 2011, 42(10): 1152-1160. (in Chinese)

    [24] 邹维列, 张俊峰, 王协群. 脱湿路径下重塑膨胀土的体变修正与土水特征[J]. 岩土工程学报, 2012, 34(12): 2213-2219. http://cge.nhri.cn/article/id/14952

    ZOU Weilie, ZHANG Junfeng, WANG Xiequn. Volume change correction and soil-water characteristics of remodeling expansive soil under dehydration path[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(12): 2213-2219. (in Chinese) http://cge.nhri.cn/article/id/14952

    [25] 陈正汉. 非饱和土与特殊土力学[M]. 北京: 中国建筑工业出版社, 2022.

    CHEN Zhenghan. Mechanics for Unsaturated and Special Soils[M]. Beijing: China Architecture & Building Press, 2022. (in Chinese)

    [26]

    LU N. Generalized soil water retention equation for adsorption and capillarity[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142(10): 04016051.

    [27]

    REVIL A, LU N. Unified water isotherms for clayey porous materials[J]. Water Resources Research, 2013, 49(9): 5685-5699.

    [28] 翟钱, 朱益瑶, 叶为民, 等. 全吸力范围非饱和土水力渗透系数的计算[J]. 岩土工程学报, 2022, 44(4): 660-668.

    ZHAI Qian, ZHU Yiyao, YE Weimin, et al. Estimation of hydraulic conductivity of unsaturated soils under entire suction range[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(4): 660-668. (in Chinese)

    [29]

    CAI G Q, LIU Y, ZHOU A N, et al. Temperature-dependent water retention curve model for both adsorption and capillarity[J]. Acta Geotechnica, 2022, 17(11): 5157-5186.

    [30] 林志强, 钱建固, 时振昊. 毛细-吸附作用下考虑孔隙比影响的单/双峰土体持水曲线模型[J]. 岩土力学, 2021, 42(9): 2499-2506.

    LIN Zhiqiang, QIAN Jiangu, SHI Zhenhao. Modeling unimodal/bimodal soil-water retention curves considering the influence of void ratio under capillarity and adsorption[J]. Rock and Soil Mechanics, 2021, 42(9): 2499-2506. (in Chinese)

    [31]

    QIAN J G, LIN Z Q, SHI Z H. Soil-water retention curve model for fine-grained soils accounting for void ratio- dependent capillarity[J]. Canadian Geotechnical Journal, 2022, 59(4): 498-509.

    [32]

    ZHOU A N, SHENG D C, LI J. Modelling water retention and volume change behaviours of unsaturated soils in non-isothermal conditions[J]. Computers and Geotechnics, 2014, 55: 1-13.

    [33]

    PHAM T A, SUTMAN M. Modeling the combined effect of initial density and temperature on the soil-water characteristic curve of unsaturated soils[J]. Acta Geotechnica, 2023, 18(12): 6427-6455.

    [34] 秦冰, 陈正汉, 孙发鑫, 等. 高吸力下持水曲线的温度效应及其吸附热力学模型[J]. 岩土工程学报, 2012, 34(10): 1877-1886. http://cge.nhri.cn/article/id/14878

    QIN Bing, CHEN Zhenghan, SUN Faxin, et al. Temperature effect on water retention curve under high suction and its modeling based on thermodynamics of sorption[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1877-1886. (in Chinese) http://cge.nhri.cn/article/id/14878

    [35]

    ZHOU A N, HUANG R Q, SHENG D C. Capillary water retention curve and shear strength of unsaturated soils[J]. Canadian Geotechnical Journal, 2016, 53(6): 974-987.

    [36] 费锁柱, 谭晓慧, 董小乐, 等. 基于土体孔径分布的土水特征曲线预测[J]. 岩土工程学报, 2021, 43(9): 1691-1699. doi: 10.11779/CJGE202109014

    FEI Suozhu, TAN Xiaohui, DONG Xiaole, et al. Prediction of soil-water characteristic curve based on pore size distribution of soils[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1691-1699. (in Chinese) doi: 10.11779/CJGE202109014

    [37]

    GAO Y, SUN D A. Soil-water retention behavior of compacted soil with different densities over a wide suction range and its prediction[J]. Computers and Geotechnics, 2017, 91: 17-26.

    [38]

    KONG L W, WANG M, GUO A G, et al. Effect of drying environment on engineering properties of an expansive soil and its microstructure[J]. Journal of Mountain Science, 2017, 14(6): 1194-1201.

    [39]

    ROMERO E, GENS A, LLORET A. Suction effects on a compacted clay under non-isothermal conditions[J]. Géotechnique, 2003, 53(1): 65-81.

    [40]

    VILLAR M V, LLORET A. Influence of temperature on the hydro-mechanical behaviour of a compacted bentonite[J]. Applied Clay Science, 2004, 26(1/2/3/4): 337-350.

    [41]

    GENS A. Specification of laboratory benchmark 3-Heating test with no water infiltration performed by UPC[M]. Barcelona: Centre International de Métodes Numèrics en Enginyeria, 2007.

    [42]

    CAI G Q, ZHAO C G, LI J, et al. A new triaxial apparatus for testing soil water retention curves of unsaturated soils under different temperatures[J]. Journal of Zhejiang University SCIENCE A, 2014, 15(5): 364-373.

图(6)  /  表(2)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-21
  • 网络出版日期:  2024-09-26
  • 刊出日期:  2025-03-31

目录

    /

    返回文章
    返回