Surface-wave free-field inversion based on dispersion property in layered media
-
摘要: 面波自由场反演是实现土-结相互作用(SSI)体系地震动输入以及揭示结构真实地震响应行为的重要步骤之一。现有反演方法将地表地震动全部作为体波考虑,仅对体波自由场进行反演。为了弥补忽略面波带来的反演精度不足,提出了一种层状介质场地基于频散特性的面波自由场反演方法,为SSI体系地震响应分析提供准确的面波激励。该方法针对频散面波多模态相互耦合、难以分离的问题,采用平均能流密度来表征各频散模态的参与量,并结合频域动力刚度矩阵计算了模态参与系数;然后采用模态参与系数对各频散模态进行解耦,将地表面波分量分配给各单阶频散模态进行单模态面波自由场反演;最后利用模态叠加原理将所有单模态面波自由场合成多模态面波自由场。方法的准确性和应用性分析结果表明,所提反演方法能够准确地还原地下真实的面波自由场以及揭示频散面波对SSI体系地震响应的重要影响,可用于为SSI体系抗震设计、风险评估等工作提供定量的指导。Abstract: The surface-wave free-field inversion is one of the important steps in realizing the seismic inputs to the soil-structure interaction (SSI) systems and further revealing the real seismic response behaviors. Currently the available inversion methods regard all ground motions as the body-wave components alone and invert only the body-wave free fields. To make up for the lack of neglecting surface waves in inversion implementations, a surface-wave free-field inversion method based on the dispersion property is proposed in this study to provide more accurate surface-wave excitation for the seismic analysis of the SSI systems resting on layered media. With the problem that multiple modes of the dispersive surface waves are coupled to each other and difficult to separate, the proposed method employs the average energy flow density to characterize the participation volume of dispersive modes and then calculates the mode participation factors using the frequency-domain dynamic stiffness matrix. The calculated mode participation factors are used to decouple the dispersive modes and assign the ground surface waves to each single mode, allowing for the inversion of single-mode surface-wave free fields. Finally, all single-mode surface-wave free fields are superimposed to form the multi-mode wavefields through the mode superposition theory. The findings from the analysis of accuracy and applicability of the proposed inversion method demonstrate its capability to effectively recover the actual underground surface-wave free fields, and shed light on the notable impact of dispersive surface waves on the seismic responses of the SSI systems, thus providing quantitative guidance for the seismic design and risk assessment of the SSI systems.
-
-
表 1 选取的地震动信息
Table 1 Information of selected earthquake events
事件(年份) 震级
(MW)台站(场地类别) 震中距/km 地表PGA/(cm·s-2)
径向/切向/竖向地表(钻孔)面波能量占比/%
Rayleigh/Love波钻孔深度/m Tottori (2000) 6.61 HRSH07(软夹型) 127.69 88.10/73.13/42.59 33/30 (29/34) 102 Tottori (2000) 6.61 HYGH12(软夹型) 115.44 57.27/76.97/27.85 58/27 (70/26) 100 Niigata (2004) 6.63 TCGH07(递增型) 72.65 91.15/125.75/66.18 56/32 (73/35) 100 Chuetsu (2007) 6.80 FKSH02(硬夹型) 113.75 34.17/36.46/14.76 40/26 (57/26) 100 Iwate (2008) 6.90 IWTH12(递增型) 133.63 71.68/83.90/36.68 58/22 (50/26) 100 Iwate (2008) 6.90 FKSH11(硬夹型) 208.91 35.18/23.39/12.47 38/39 (54/40) 115 -
[1] 刘晶波, 吕彦东. 结构—地基动力相互作用问题分析的一种直接方法[J]. 土木工程学报, 1998, 31(3): 55-64. LIU Jingbo, LÜ Yandong. A direct method for analysis of dynamic soil-structure interaction[J]. China Civil Engineering Journal, 1998, 31(3): 55-64. (in Chinese)
[2] 刘晶波, 谭辉, 宝鑫, 等. 土-结构动力相互作用分析中基于人工边界子结构的地震波动输入方法[J]. 力学学报, 2018, 50(1): 32-43. LIU Jingbo, TAN Hui, BAO Xin, et al. The seismic wave input method for soil-structure dynamic interaction analysis based on the substructure of artificial boundaries[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(1): 32-43. (in Chinese)
[3] BIELAK J. Domain reduction method for three-dimensional earthquake modeling in localized regions, part I: theory[J]. Bulletin of the Seismological Society of America, 2003, 93(2): 817-824. doi: 10.1785/0120010251
[4] GHAHARI S F, ABAZARSA F, JEONG C, et al. Blind identification of site effects and bedrock motion from surface response signals[J]. Soil Dynamics and Earthquake Engineering, 2018, 107: 322-331. doi: 10.1016/j.soildyn.2018.01.045
[5] 胡聿贤, 朱镜清, 朱莉, 等. 频域中的结构振动输入反演[J]. 地震工程与工程振动, 1981, 1(1): 41-55. HU Yuxian, ZHU Jingqing, ZHU Li, HU Yong. Identification of input to vibrational structure in frequency domain[J]. Earthquake Engineering and Engineering Vibration, 1981, 1(1): 41-55. (in Chinese)
[6] IDRISS I M, SUN J I. User's Manual for SHAKE91- A Computer Program for Conducting Equivalent Linear Seismic Response Analyses of Horizontally Layered Soil Deposits: Center for Geotechnical Modeling[R]. California: Department of Civil & Environmental Engineering, University of California, 1992.
[7] BARDET JP, ICHII K, LIN CH. EERA: A Computer Program for Equivalent-Linear Earthquake Site Response Analyses of Layered Soil Deposits[R]. Los Angeles: Department of Civil Engineering, University of Southern California, 2000.
[8] NAGASHIMA F, KAWASE H, MATSUSHIMA S. Estimation of horizontal seismic bedrock motion from vertical surface motion based on horizontal-to-vertical spectral ratios of earthquake motions[C]//16th World Conference on Earthquake Engineering. Santiago, Chile, 2017.
[9] LIANG J W, ZHANG A Z, HE Y, et al. 2D nonlinear inversion of bedrock motion from the surface motion of a layered half-space[J]. Engineering Analysis with Boundary Elements, 2019, 106: 149-159. doi: 10.1016/j.enganabound.2019.05.009
[10] FELDGUN V R, KARINSKI Y S, YANKELEVSKY D Z, et al. A new analytical approach to reconstruct the acceleration time history at the bedrock base from the free surface signal records[J]. Soil Dynamics and Earthquake Engineering, 2016, 85: 19-30. doi: 10.1016/j.soildyn.2016.03.003
[11] 刘晶波, 王文晖, 刘祥庆, 等. Rayleigh波作用下地下结构地震反应影响分析[J]. 振动与冲击, 2013, 32(16): 95-99. LIU Jingbo, WANG Wenhui, LIU Xiangqing, et al. Influence analysis on seismic response of underground structures under propagation of Rayleigh waves[J]. Journal of Vibration and Shock, 2013, 32(16): 95-99. (in Chinese)
[12] MEZA FAJARDO K C, PAPAGEORGIOU A S. Ductility demands of tall buildings subjected to base rocking induced by Rayleigh waves[J]. Earthquake Engineering & Structural Dynamics, 2019, 48(10): 1174-1194.
[13] CAROLINA F, PERRAUD Y, CHATZIGOGOS C. Seismic Fragility Functions of Bridge Pylons: Effects of Rayleigh- Surface Waves[C]// Third European Conference on Earthquake Engineering and Seismology-3ECEES, Bucharest, Romania, 2022.
[14] LI G, XUE Y H, WANG R, et al. Multiphase wavefield inversion methodology for seismic analysis of soil-structure interaction systems[J]. Soil Dynamics and Earthquake Engineering, 2023, 173: 108081. doi: 10.1016/j.soildyn.2023.108081
[15] THOMSON W T. Transmission of elastic waves through a stratified solid medium[J]. Journal of Applied Physics, 1950, 21(2): 89-93. doi: 10.1063/1.1699629
[16] TOKIMATSU K, TAMURA S, KOJIMA H. Effects of multiple modes on Rayleigh wave dispersion characteristics [J]. Journal of Geotechnical Engineering, 1992, 118(10): 1529-1543. doi: 10.1061/(ASCE)0733-9410(1992)118:10(1529)
[17] XIA J H, MILLER R D, PARK C B, et al. Inversion of high frequency surface waves with fundamental and higher modes[J]. Journal of Applied Geophysics, 2003, 52(1): 45-57. doi: 10.1016/S0926-9851(02)00239-2
[18] BEATY K S, SCHMITT D R, SACCHI M. Simulated annealing inversion of multimode Rayleigh wave dispersion curves for geological structure[J]. Geophysical Journal International, 2002, 151(2): 622-631. doi: 10.1046/j.1365-246X.2002.01809.x
[19] WOLF J P. Dynamic Soil-Structure Interaction[M]. Englewood Cliffs, N J: Prentice-Hall, 1985.
[20] MEZA-FAJARDO K C, PAPAGEORGIOU A S, SEMBLAT J F. Identification and extraction of surface waves from three-component seismograms based on the normalized inner product[J]. Bulletin of the Seismological Society of America, 2015, 105(1): 210-229. doi: 10.1785/0120140012
-
其他相关附件