基于现场试验的海上筒型基础风电结构动力特性研究

    蔡正银, 范开放, 朱洵

    蔡正银, 范开放, 朱洵. 基于现场试验的海上筒型基础风电结构动力特性研究[J]. 岩土工程学报, 2025, 47(3): 443-452. DOI: 10.11779/CJGE20231183
    引用本文: 蔡正银, 范开放, 朱洵. 基于现场试验的海上筒型基础风电结构动力特性研究[J]. 岩土工程学报, 2025, 47(3): 443-452. DOI: 10.11779/CJGE20231183
    CAI Zhengyin, FAN Kaifang, ZHU Xun. Dynamic characteristics of offshore wind power with bucket foundation based on field tests[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(3): 443-452. DOI: 10.11779/CJGE20231183
    Citation: CAI Zhengyin, FAN Kaifang, ZHU Xun. Dynamic characteristics of offshore wind power with bucket foundation based on field tests[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(3): 443-452. DOI: 10.11779/CJGE20231183

    基于现场试验的海上筒型基础风电结构动力特性研究  English Version

    基金项目: 

    国家重点研发计划项目 2021YFB2600700

    国家自然科学基金项目 52378358

    江苏省青年基金项目 BK20230125

    江苏省重点研发计划社会发展项目 BE2023673

    详细信息
      作者简介:

      蔡正银(1965—),男,教授级高级工程师,主要从事土的基本性质与土工测试、土的本构理论、土工离心模拟技术方面的研究工作。E-mail: zycai@nhri.cn

      通讯作者:

      范开放, E-mail: kaifangfan@163.com

    • 中图分类号: TU196

    Dynamic characteristics of offshore wind power with bucket foundation based on field tests

    • 摘要: 海上风电结构在正常服役过程中长期承受风、浪等复杂环境荷载,其结构动力特性是整机安全性评估的重要依据。基于江苏如东复合筒型基础海上风电结构的原位测试数据,识别了不同环境激励下的结构模态参数,探讨了海上风电结构动力特性随环境激励、时间等的演化规律。结果表明:结构模态频率和阻尼比总体服从正态分布,随时序表现出一定离散性,径向频率集中在0.308~0.315 Hz,径向阻尼比集中在2.75%~3.5%;风荷载为风电结构振动特性的关键控制荷载,模态频率与风速之间呈负相关,模态径向阻尼比与风速之间呈正相关,且风速大于7 m/s后,其相关性随着风速增大均略有增加;随时间推移,结构频率出现一定程度的退化,退化主要集中在测试期间的前150 d,反映出土体对筒型基础整体约束能力的下降。研究指出筒-土接触作用减弱是造成结构频率退化的主要原因,并采用筒-土界面刚度弱化作用和海底潮流冲刷作用做出了相应的解释和讨论。
      Abstract: The offshore wind power structures bear complex environmental loads induced by winds and waves over the life time. Dynamic characteristic is an important basis for the safety assessment of the offshore wind power structures. Based on the in-situ test data of offshore wind power on composite bucket foundation in Rudong county of Jiangsu Province, the structural modal parameters under different environmental excitations are identified, and the evolution laws of dynamic characteristics of offshore wind power with environmental excitations and time are analyzed. The results show that the modal frequency and damping ratio of the offshore wind power obey the normal distribution, and exhibit a certain degree of dispersion. The modal frequency and damping ratio in the radial direction are concentrated in the ranges of 0.308~0.315 Hz and 2.75%~3.5%, respectively. The wind load is the key control one for vibration characteristics of the wind power structures. There is a negative correlation between the modal frequency and the wind speed, and a positive correlation between the modal radial damping ratio and the wind speed. With the increase of the wind speed, the correlation coefficient increases slightly when the wind speed is greater than 7 m/s. The modal frequency shows a certain degree of degradation, and the degradation is mainly concentrated in the first 150 days of the test period, reflecting the decline in the constraint effects of the soil on the bucket foundation. The weakening of the foundation-soil contact effects is the main reason for the degradation of the modal frequency, and the corresponding explanation and discussion are made by the stiffness weakening effects of foundation-soil contact and the scouring effects.
    • 图  1   如东风向、波浪方向玫瑰图

      Figure  1.   Rose map of perennial winds and waves in Rudong county

      图  2   海上风电结构及测点布置示意图

      Figure  2.   Offshore wind turbine and layout of measuring points

      图  3   筒型基础实物及剖面图

      Figure  3.   Field picture and section of bucket foundation

      图  4   塔筒顶部#5测点典型测试结果

      Figure  4.   Partial test results of structural acceleration at measuring point No. 5

      图  5   不同测点加速度测试结果

      Figure  5.   Results of acceleration at different measuring points

      图  6   结构模态参数识别结果

      Figure  6.   Identified results of modal parameters

      图  7   结构模态参数分布直方图

      Figure  7.   Distribution histogram of modal parameters

      图  8   不同风速和波高下的结构模态频率

      Figure  8.   Modal frequencies at different wind speeds and wave heights

      图  9   不同风速下的结构模态频率箱型图

      Figure  9.   Box diagram of modal frequency at different wind speeds

      图  10   不同风速和波高下的结构模态阻尼比

      Figure  10.   Damping ratios at different wind speeds and wave heights

      图  11   不同风速下的结构阻尼比箱型图

      Figure  11.   Box diagram of modal damping ratio at different wind speeds

      图  12   结构径向频率随时间的变化

      Figure  12.   Radial modal frequencies at different time

      表  1   试验场地土层基本参数

      Table  1   Basic mechanical parameters of in-situ tests

      土层名称 ρ/(g·cm-3) Es /MPa c/kPa φ/(°)
      粉砂夹粉土 2.01 11.38 3.6 33.7
      淤泥质粉质黏土 1.80 3.09 14.4 11.6
      淤泥质粉质黏土夹粉土 1.85 3.31 14.5 11.8
      注:ρ为天然密度,Es为压缩模量,c为黏聚力,φ为内摩擦角。
      下载: 导出CSV
    • [1]

      HÄCKELL M W, ROLFES R. Monitoring a 5MW offshore wind energy converter-condition parameters and triangulation based extraction of modal parameters[J]. Mechanical Systems and Signal Processing, 2013, 40(1): 322-343. doi: 10.1016/j.ymssp.2013.04.004

      [2]

      ÁLAMO G M, AZNÁREZ J J, PADRÓN L A, et al. Dynamic soil-structure interaction in offshore wind turbines on monopiles in layered seabed based on real data[J]. Ocean Engineering, 2018, 156: 14-24. doi: 10.1016/j.oceaneng.2018.02.059

      [3]

      BASSETT K, CARRIVEAU R, TING D S K. Vibration analysis of 2.3 MW wind turbine operation using the discrete wavelet transform[J]. Wind Engineering, 2010, 34(4): 375-388. doi: 10.1260/0309-524X.34.4.375

      [4]

      WEIJTJENS W. Classifying resonant frequencies and damping values of an offshore wind turbine on a monopile foundation for different operational conditions[C]// European Wind Energy Association 2014, Barcelona, 2014.

      [5] 蔡正银, 王清山, 关云飞, 等. 分舱板对海上风电复合筒型基础承载特性的影响研究[J]. 岩土工程学报, 2021, 43(4): 751-759. doi: 10.11779/CJGE202104018

      CAI Zhengyin, WANG Qingshan, GUAN Yunfei, et al. Influences of bulkheads on bearing characteristics of composite bucket foundation of offshore wind turbines[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(4): 751-759. (in Chinese) doi: 10.11779/CJGE202104018

      [6]

      ZHU X, CHEN Z, GUAN Y F, et al. Field test on the mechanism of composite bucket foundation penetrating sandy silt overlying clay[J]. Ocean Engineering, 2023, 288: 116102. doi: 10.1016/j.oceaneng.2023.116102

      [7] 练继建, 陈飞, 杨旭, 等. 海上风机复合筒型基础负压沉放调平[J]. 天津大学学报(自然科学与工程技术版), 2014, 47(11): 987-993.

      LIAN Jijian, CHEN Fei, YANG Xu, et al. Suction installation and leveling of composite bucket foundation for offshore wind turbines[J]. Journal of Tianjin University (Science and Technology), 2014, 47(11): 987-993. (in Chinese)

      [8]

      DING H Y, LIU Y G, ZHANG P Y, et al. Model tests on the bearing capacity of wide-shallow composite bucket foundations for offshore wind turbines in clay[J]. Ocean Engineering, 2015, 103: 114-122. doi: 10.1016/j.oceaneng.2015.04.068

      [9]

      NORÉN-COSGRIFF K, KAYNIA A M. Estimation of natural frequencies and damping using dynamic field data from an offshore wind turbine[J]. Marine Structures, 2021, 76: 102915. doi: 10.1016/j.marstruc.2020.102915

      [10] 熊春宝, 于丽娜, 常翔宇. 基于EEMD-小波阈值去噪的桥梁结构模态参数识别[J]. 天津大学学报(自然科学与工程技术版), 2020, 53(4): 378-385.

      XIONG Chunbao, YU Lina, CHANG Xiangyu. Modal parameter identification of bridge structures based on EEMD-wavelet threshold denoising[J]. Journal of Tianjin University (Science and Technology), 2020, 53(4): 378-385. (in Chinese)

      [11] 王茂华, 迟世春, 周雄雄. 基于地震记录和SSI方法的高土石坝模态识别[J]. 岩土工程学报, 2021, 43(7): 1279-1287. doi: 10.11779/CJGE202107013

      WANG Maohua, CHI Shichun, ZHOU Xiongxiong. Modal identification of high earth-rock dams based on seismic records and SSI method[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(7): 1279-1287. (in Chinese) doi: 10.11779/CJGE202107013

      [12] 夏栋舟, 何益斌, 刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. 岩土力学, 2009, 30(10): 2923-2928. doi: 10.3969/j.issn.1000-7598.2009.10.005

      XIA Dongzhou, HE Yibin, LIU Jianhua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. Rock and Soil Mechanics, 2009, 30(10): 2923-2928. (in Chinese) doi: 10.3969/j.issn.1000-7598.2009.10.005

      [13] 顾永强, 冯锦飞, 张哲玮, 等. 基于模态参数的在役风力发电机叶片损伤识别研究[J]. 太阳能学报, 2022, 43(3): 350-355.

      GU Yongqiang, FENG Jinfei, ZHANG Zhewei, et al. Research on blade damage identification of active wind turbine based on modal parameters[J]. Acta Energiae Solaris Sinica, 2022, 43(3): 350-355. (in Chinese)

      [14]

      WHITE D J, BOLTON M D. Displacement and strain paths during plane-strain model pile installation in sand[J]. Géotechnique, 2004, 54(6): 375-397. doi: 10.1680/geot.2004.54.6.375

      [15]

      DEJONG J T, WHITE D J, RANDOLPH M F. Microscale observation and modeling of soil-structure interface behavior using particle image velocimetry[J]. Soils and Foundations, 2006, 46(1): 15-28. doi: 10.3208/sandf.46.15

      [16] 刘俊伟, 朱娜, 王立忠, 等. 循环荷载下砂与钢板界面的弱化机制[J]. 浙江大学学报(工学版), 2018, 52(6): 1123-1130.

      LIU Junwei, ZHU Na, WANG Lizhong, et al. Degenerate mechanism of sand-steel interface under cyclic loading[J]. Journal of Zhejiang University (Engineering Science), 2018, 52(6): 1123-1130. (in Chinese)

      [17]

      PRENDERGAST L J, HESTER D, GAVIN K, et al. An investigation of the changes in the natural frequency of a pile affected by scour[J]. Journal of Sound and Vibration, 2013, 332(25): 6685-6702. doi: 10.1016/j.jsv.2013.08.020

      [18] 马建军, 韩书娟, 高笑娟, 等. 层状土场中冲刷作用下部分埋置单桩动力响应分析[J]. 岩土力学, 2022, 43(6): 1705-1716.

      MA Jianjun, HAN Shujuan, GAO Xiaojuan, et al. Dynamic response analysis of the partially-embedded single pile affected by scour in layered soils[J]. Rock and Soil Mechanics, 2022, 43(6): 1705-1716. (in Chinese)

    图(12)  /  表(1)
    计量
    • 文章访问数:  781
    • HTML全文浏览量:  88
    • PDF下载量:  251
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-12-03
    • 网络出版日期:  2024-07-23
    • 刊出日期:  2025-02-28

    目录

      /

      返回文章
      返回